

Biochemistry Department Faculty of Science Ain Shams University

Molecular Study and Mutational Analysis of Glutaric Aciduria Type I in Egyptian infants


By

Ahmed El-Sayed Moseilhy El-Sayed
For Fulfillment of Master Degree in Biochemistry
(B.Sc. in Biochemistry)

Prof. Dr. Magdy Mahmoud Mohamed
Professor of biochemistry,
Faculty of Science, Ain Shams University

Prof. Dr. Osama Kamal Zaki
Consultant and director of Medical Genetics Unit
Faculty of Medicine
Ain Shams University Hospitals

بسم الله الرحمن الرحيم

صدق الله العظيم

Approval Sheet

Title of thesis:

Molecular Study and Mutational Analysis of Glutaric Aciduria Type I in Egyptian infants

Name of student:

Ahmed El-Sayed Moseilhy El-Sayed

(B.Sc. in Biochemistry 2010, Ain Shams University. Biochemist in Medical Genetics Unit, Ain shams University)

This thesis submitted For Fulfillment of Master Degree in Biochemistry

This thesis has been approved by: Signature:

Prof. Dr. Reda Rashad Ramzy

Professor of Biochemistry

Institute of Nutrition

Prof. Dr. Mohammed Zakarya Gad

Professor of Biochemistry

Faculty of Pharmacy

German University

Prof. Dr. Magdy Mahmoud Mohammed

Professor of Biochemistry

Faculty of science

Ain Shams University

Prof. Dr.						
-----------	--	--	--	--	--	--

(Head of Biochemistry Department)

Acknowledgement

First of all thanks to Allah who helped me and give me the power to complete this work and all thanks to my mother and my family who encourage and support me to complete this thesis.

Great and extreme gratitude to my kind and helpful supervisor

Professor Dr. Magdy Mahmoud Mohamed (Professor of Biochemistry in faculty of science Ain Shams University) for his guidance in planning this study and his support and help.

It is a great pleasure to express my deepest thanks to my

Professor Dr. Osama kamal Zaki (Consultant and Director of Medical Genetics Unit ain Shams University) for his guidance, encouragement, skillful and his support and help.

I am also indebted to all my colleagues in medical genetics unit who helped me in this study for their efforts to complete this work.

CONTENTS

Subject	Page
Abstract	i
List of Abbreviations	ii
List of Figures	iv
List of Tables	vii
Introduction	1
Aim of the work	2
Chapter (I) Review of Literature	
I.1.Inborn error of metabolism	3
I.2.Glutaric aciduria	6
I.2.1.Glutaric aciduria type I	7
I.2.2. GCDH genome	10
I.2.3. Metabolic pathways	13
I.2.4. Incidence of glutaric aciduria type I	20
I.2.5. Clinical manifestation	22
I.2.6. Biochemical study of GA1	23
I.2.7. Treatment of glutaric aciduria typeI	27
I.2.8. DNA sequence of mRNA of GCDH gene	28
I.2.9. Protein sequence of GCDH	29
Chapter (II) Subjects and Methods	
II.1 Subjects and Methods	30
II.1.1 Patients	30
II.1.2. Dry blood test by LC/MS-MS	31
II.1.3. Detection for organic acids in urine	31
II.1.4. Blood Samples	31
II.1.5. Ready-made reagents	32
II.1.6. Primers	32

Subject	Page
II.1.7. Buffers	33
II.1.8. Preparations	33
II.2 Methods	34
II.2.1.RNA Purification	34
II.2.2.Reverse Transcription step (cDNA Synthesis)	36
II.2.3. Polymerase Chain Reaction (PCR)	39
II.2.4 Agarose Gel Electrophoresis	40
II.2.5.Sequencing of the PCR product	41
II.2.6.Analysis of data	41
Chapter (III) Results	
III.1. Clinical and biochemical analysis	42
III.2. Genetic analysis of GCDH gene	44
III.2.1.Gel Electrophoresis for PCR of Set 1 region of GCDH	47
IV.2.2.Gel Electrophoresis for PCR of Set 2 region of GCDH	48
III.2.3.Gel Electrophoresis for PCR of Set 3 region of GCDH	49
III.2.4.Gel Electrophoresis for PCR of Set 4 region of GCDH	50
III.3.Sequencing of the PCR product	51
III.4.Analysis for the sequencing chromatograms	52
III.4.1.Analysis of sequence of patients (P2, P3, P4, P6, P7, P8 and P17) with wild type GCDH gene	55
III.4.2.Analysis of sequence of patient (P1) with wild type GCDH	56
III.4.3.Analysis of sequence of patient (P9) with wild type GCDH	57
III.4.4.Analysis of sequence of patient (P12) with wild type GCDH	58
III.4.5.Analysis of sequence of patients (P14, P18 and P19) with wild type GCDH	59

Subject	Page
III.4.6.Analysis of sequence of patient (P13) with wild type GCDH	60
III.4.7.Analysis of sequence of patient (P5) with wild type GCDH	61
III.4.8.Analysis of sequence of patient (P10) with wild type GCDH	62
III.4.9.Analysis of sequence of patient (P15) with wild type GCDH	63
III.4.10.Analysis of sequence of patient (P16) with wild type GCDH	64
III.4.11.Analysis of sequence of patient (P20) with wild type GCDH	65
III.4.12.Analysis of sequence with wild type GCDH in patient (P1)	66
III.4.13.Analysis of sequence with wild type GCDH in 3`- UTR region	67
III.4.14.Analysis of sequence with wild type GCDH in 3`- UTR region	68
III.4.15.Analysis of sequence with wild type GCDH in 3`- UTR region	69
III.5.Alignment and analysis of amino acid of GCDH protein	74
III.5.1.Blast P alignment of the amino acid sequence of patient (P1) c.383G>A	74
III.5.2.Blast P alignment of the amino acid sequence of patients (P2, P3, P4, P6, P7, P8 and P17) c.1204C>T	75
III.5.3.Blast P alignment of the amino acid sequence of patient (P12) c.356C>T	76
III.5.4.Blast P alignment of the amino acid sequence of patient (P9) c.416C>T	77
III.5.5.Blast P alignment of the amino acid sequence of patient (P14, P18 and P19) c.770G>A	78
III.5.6.Blast P alignment of the amino acid sequence of patient (P13) c.644_645insCTCG	79

Subject	Page		
III.5.7.BlastP alignment of the amino acid sequence of patient (P5) c.148T>A and c.416C>T	80		
III.5.8.Blast P alignment of the amino acid sequence of patient (P10) c.1284C>G	81		
III.5.9.Blast P alignment of the amino acid sequence of patient (P15) c.192G>T	82		
III.5.10.Blast P alignment of the amino acid sequence of patient (P20) c.158C>A	83		
III.5.11.Blast P alignment of the amino acid sequence of patient (P16) p.Glu397*	84		
III.6.Three dimensional structure of the mutant GCDH protein	85		
III.6.1.3D model for normal GCDH protein	85		
III.6.2.3D model for GCDH with mutation p.Arg128Gln	86		
III.6.3.3D model for GCDH with mutation p.Ser139Leu	86		
III.6.4.3D model for GCDH with mutation p.Ser119Leu	86		
III.6.5.3D model for GCDH with mutation p.(Pro217Leufs*14)	87		
III.6.6.3D model for GCDH with mutation p.Arg257Gln	87		
III.6.7.3D model for GCDH with mutation p.Arg402Trp	87		
III.6.8.3D model for GCDH with compound mutation p.Trp50Arg and p.Ser139Leu	88		
III.6.9.3D model for GCDH with mutation p.Ile428Met	88		
III.6.10.3D model for GCDH with mutation p.Glu64Asp	88		
III.6.11.3D model for GCDH with mutation p.Glu397*	89		
III.6.12.3D model for GCDH with mutation p.Pro53Gln	89		
Chapter (IV) Discussion			
Discussion	90		
Chapter (V) Summary			
Summary	107		
References	110		

Subject	Page
Chapter (VI) Appendix (A)	
Nucleotide Blast and analysis of GCDH patients nucleotide results	122
Arabic Abstract.	١
Arabic Summary.	۲

Abstract

Glutaric aciduria type I (GAI) is an autosomal recessive disorder characterized by a deficiency of glutaryl-CoA dehydrogenase (GCDH). GAI is one of the treatable metabolic disorders characterized by macrocephaly, acute encephalitis-like crises, dystonia and characteristic frontotemporal atrophy. In this study, the clinical, biochemical and molecular profile of twenty one patients with GAI from twenty one unrelated families from Egypt were carried out. RNA was extracted from whole blood for synthesis of cDNA, the fragment of GCDH was amplified and sequenced. In this study, a total of 15 different mutations were reported between Egyptian families ranging from missense, nonsense, frame shift and silent mutations. A five novel mutations in GCDH gene (c.148T>A (p.Trp50Arg), c.158C>A (p.Pro53Gln), c.1284C>G (p.Ile428Met), c.644_645insCTCG (p.(Pro217Leufs*14) and c.1189G>T (p.Glu397*)) were reported. In addition to seven mutations have been published previously and 3 silent mutations in 3'-UTR region. It is clear that out of 21 patients Exons 4 (3 mutations/3 patients), 6 (3 mutations/4 patients), 8 (2 mutations/4 patients) and 11(2 mutations/8 patients) are hot spot regions of GCDH gene representing 14%, 20%, 20% and 38% respectively of patients. Molecular confirmation is helpful in providing genetic counseling and prenatal diagnosis in subsequent pregnancy. An early diagnosis and timely intervention can improve the underlying prognosis.

List of Abbreviations

ACDs	Acyl-CoA dehydrogenases
BBB	Blood brain barrier
BLAST	Basic Local Alignment Search Tool
BLASTN	Nucleotide homology search
BIASTP	Protein homology search
CAT	Cationic amino acid transporter
CPTII	Carnitine palmitoyl transferase II
C5DC	Glutaryl carnitine/ C5 dicarboxylic carnitine
CSF	Cerebrospinal fluid
cDNA	complementary deoxyribonucleic acid
DNA	Deoxyribonucleic acid
EDTA	Ethylene diamine tetra acetic acid
ETBr	Ethidium bromide
FAD	Flavin adenine diphosphate
GC-MS	Gas chromatograph-mass spectrometry
GA	Glutamic aciduria /Glutaric acid
GAI	Glutaric aciduria type I
GCDH	Glutaryl-CoA Dehydrogenase
GAII	Glutaric aciduria type II
GAIII	Glutaric aciduria type III
gDNA	Genomic deoxyribonucleic acid
HPLC	High performance liquid chromatography
HGMD	The Human Gene Mutation Database
IEM	Inborn Errors of Metabolism
IMD	Inherited metabolic disorders
KD	Kilo Dalton
LC/MS	Liquid chromatograph-mass spectrometry
MRI	Magnetic Resonance Imaging
mRNA	Messenger ribonucleic acid
NCBI	National Center for biotechnology information
OADs	Organic acid disorders
OAs	Organic acidurias

ODC	Oxodicarboxylate carrier
OGC	Oxoglutarate carrier
ORC1	Ornithine carriers
ORF	Open reading frame
PCR	Polymerase Chain Reaction
PDH	Pyruvate dehydrogenase
r.p.m	Round per minute
TBE buffer	Tris-Borate EDTA buffer
UTR	Untranslated Region
α-KG	α-ketoglutarate
3-OHGA	3-hydroxyglutaric acid

List of Figures

Figure No.	Title	Page
Figure(1-1)	Autosomal inherited disorders in inborn error metabolism diseases.	9
Figure (1-2)	Structure of chromosome 19 and location of GCDH on chromosome 19.	11
Figure(1-3)	Lysine metabolism to α-aminoadipate.	14
Figure(1-4)	Proposed mechanism of mitochondrial dysfunction due to GCDH deficiency.	15
Figure(1-5)	Proposed mechanism of mitochondrial dysfunction due to GCDH deficiency.	16
Figure(1-6)	GA and 3-OHGA impair the anaplerotic supply of TCA cycle intermediates from astrocytes to neurons.	18
Figure(1-7)	Degradative pathway of lysine, hydroxylysine and tryptophan.	19
Figure(1-8)	The distribution of Muslim (red) and Christian (yellow) families with GA1 in Egypt generated by Epi-info program.	21
Figure(1-9)	Gas chromatography-mass spectrometry (GC-MS) organic acid profile of urine from patient with GA1, illustrating peaks consistent with the presence of glutaric, glutaconic, and 3-hydroxyglutaric acids in this patient's urine.	25
Figure(1-10)	Diagnostic algorithm for glutaric aciduria type I	26
Figure(1-11)	DNA sequence of of mRNA of GCDH gene it shows ATG strating codon from base 109(bolded), stop codon TGA(bolded) at base 1425 and poly A tail(bolded).	28
Figure(1-12)	Amino acid deduced seuqunce of GCDH gene giving 438 amino acids strating with Methionine.	29
Figure(1-13)	3D model protein structure of normal GCDH.	29
Figure(3-1)	Gel Electrophoresis for PCR products of Set 1 region of GCDH gene.	47
Figure(3-2)	Gel Electrophoresis for PCR products of Set 2 region of GCDH gene	48

Figure No.	Title	Page
Figure(3-3)	Gel Electrophoresis for PCR products of Set 3 region of GCDH gene.	49
Figure(3-4)	Gel Electrophoresis for PCR products of Set 4 region of GCDH gene.	50
Figures(3-5)to (3-20)	Analysis of sequence of patients of GAI with Wild type GCDH gene sequence.	55
Figure(3-21)	Blast P alignment of c.383G>A mutation in patient (P1) with normal GCDH protein giving p.Arg128Gln mutation.	74
Figure(3-22)	Blast P alignment of c.1204C>T mutation in patients (P2, P3, P4, P6, P7, P8 and P17) with normal GCDH protein giving P.Arg402Trp mutation.	75
Figure(3-23)	Blast P alignment of c.356C>T mutation in patient (P12) with normal GCDH protein giving p.Ser119Leu mutation.	76
Figure(3-24)	Blast P alignment of c.416C>T mutation in patient (P9) with normal GCDH protein giving p.Ser139Leu mutation.	77
Figure(3-25)	Blast P alignment of c.770G>A mutation in patients no.14,18 and 19 with normal GCDH protein giving p.Arg257Gln mutation.	78
Figure(3-26)	Blast P alignment of c.644_645 insCTCG mutation in patient (P13) with normal GCDH protein causing frame shift of the encoded amino acid.	79
Figure(3-27)	Blast P alignment of c.148T>A and c.416C>T mutation in patient (P5) with normal GCDH protein.	80
Figure(3-28)	Blast P alignment of c.1284C>G mutation in patient (P10) with normal GCDH protein.	81
Figure(3-29)	Blast P alignment of c.192G>T mutation in patient (P15) with normal GCDH protein.	82
Figure(3-30)	Blast P alignment of c.158C>A mutation in patient (P20) with normal GCDH protein.	83

Figure No.	Title	Page
Figure(3-31)	Blast P alignment of c.1189G>T mutation in patient (P16) with normal GCDH protein showing stop codon at p.Glu397*	84
Figure(3-32) to (3-43)	3D model of the normal GCDH protein and different 3D models of different mutations of GCDH.	85