

To ALLAH, the Most Merciful and the Most Gracious, I kneel to express my gratitude for the strengths and His blessing in completing this thesis. All praises to Allah for all the countless gifts I have been offered, including those persons who gave me their hands to be able to fulfill this study.

I would like to express my gratefulness and respect to Prof. Dr. Mohamed Mohey Eldin Elmazar, Dean of Faculty of Pharmacy, The British University in Egypt, for his scientific support and for giving me the honor of working under his supervision and valuable guidance. I would like to record my appreciation for his constructive and instructive comments and valuable suggestions which made him a backbone of this research and so to this thesis. In fact, a few words would never suffice to do justice in thanking Prof. Dr. Mohamed Mohey Eldin Elmazar, for his extra ordinary contribution of time, effort and valuable experience.

Special thanks and deepest gratitude to Prof. Dr. Osama Ahmed Badary, Chairman of National Organization for Drug Control and Research (NODCAR), Ministry of Health and Population, for his generous help, supervision and magnificent assistance from the very early stage of this research. He spent much of his valuable time revising every detail in the study, which aided this work to be accomplished in its present picture.

My deepest appreciation and warmest gratitude to **Dr. Manal** El-Hamamsy, Professor of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, for her great help, cooperativeness, sincere

supervision and encouragement throughout the development of this work. I am truly thankful for her sincere support.

I would like to express my gratitude and appreciation to Dr. Mona Farag Schaalan, Head of Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University, for her supervision, advice, and guidance as well as giving me precious experiences throughout the work. Working under her supervision was a great advantage for her continuous guidance, tremendous encouragement, assistance and endless support.

I would like to express my deepest gratitude and sincere thanks to **Dr. Osama Ashraf Ahmed, Associate professor of Internal Medicine, Faculty of Medicine, Ain Shams University,** for his support through the investigational part of this thesis, and whose support helped me greatly in the completion of this work. He encouraged me all the time for a better performance.

Last but not least, my deepest gratitude goes to my beloved family for their endless love, prayers and encouragement. Their love has always inspired me to do my best. To those who indirectly contribute in this research, your kindness means a lot to me. Thank you very much.

Nermeen Ashoush

Contents

	Page
List of Abbreviations	ii
List of Tables	v
List of Figures	viii
Abstract	ix
Introduction	1
Review of Literature	
Chapter 1: Hepatitis C Virus Infection	6
Chapter 2: Folic Acid	20
Chapter 3: Vitamin B Complex	38
Aim of the work	61
Subjects and Methods	
Patients	62
Study Design	63
Blood sampling and laboratory tests	65
Measurements and outcomes	66
Assessment of safety	67
Health related quality of life	67
Estimation of laboratory parameters	68
Results	73
Discussion	138
Conclusion and Recommendations	155
Summary	157
References	163
Appendices	186

List of Abbreviations

AdoMet:AdenosylmethionineALT:Alanine aminotransferaseAST:Aspartate aminotransferase

ATF: Anti-thiamine factors

AThDP: Adenosine thiamine diphosphate **AThTP:** Adenosine thiamine triphosphate

ATP: Adenosine triphosphate BH4: Tetrahydrobiopterine

BP: Bodily Pain

cEVR: Complete early virologic response

CN: Cyanide CsA: Cyclosporine

DAAs: Direct-acting antiviral
DHF: Dihydrofolic acid
EF: Extrinsic factor

ETR: End-of-treatment response

FA: Folic acid

FIGLU: Formiminoglutamic acid GABA: Gamma aminobutyric acid

GH: General Health

GTP: Guanosine-5'-triphosphate

H₂O₂: Hydrogen peroxide H₂SO₄: Sulphuric acid

HCC: Hepatocellular carcinoma
HCV-4: Hepatitis C virus genotype 4

HCV: Hepatitis C virus Hcy: Homocysteine

HIV: Human immunodeficiency virus HQLQ: Health quality of life questionnaire

Hrp: Horseradish peroxidase
HRQL: Health related quality of life
HTAs: Host-targeting antivirals

IF: Intrinsic factorIFNα: Interferon alpha

MCS: Mental Component Summary

MH: Mental Health

MMA: Methylmalonic acid MTHFR: Methylene THF reductase

MTR: 5-methyltetrahydrofolate-homocysteine methyltransferase

MUT: Methylmalonyl Coenzyme A mutase

NADPH: Nicotinamide adenine dinucleotide phosphate-oxidase

NIA: Neuroleptic-induced akinesia
NIs: Nucleos(t)ide inhibitors
NNIs: Non-nucleoside inhibitors

NTD: Neural tube defects
OD: Optical densities

PCS: Physical Component Summary pEVR: Partial early virologic response

PF: Physical Functioning

PIFN/RBV: Pegylated interferon in combination with ribavirin

PIFNα-2: Pegylated IFNα-2 PIs: Protease inhibitors

PL: Pyridoxal

PLP: Pyridoxal 5-phosphate

PM: Pyridoxamine

PMS: Premenstrual syndrome

PN: Pyridoxine

Pte Glu: Pteroglutamic acid

Pte: Pteroic acid
QOL: Quality of life
RBV: Ribavirin

RE: Role-Emotional

RNS: Reactive nitrogen species
ROS: Reactive oxygen species

RP: Role-Physical

RVR: Rapid virologic response

s/co: Sample/Cut-off

SAM: S-adenosylmethionine SF: Social Functioning

SF-36v2: Short form-36 Health Survey version 2

SOF: Sofosbuvir

SPSS: Statistical package for social science

SVR: Sustained virologic response TBP: Thiamine-binding protein

TCP: Thrombocytopenia
ThDP: Thiamine diphosphate
THF: Tetrahydrofolic acid

ThMP: Thiamine monophosphate
ThTP: Thiamine triphosphate
TMB: Tetramethylbenzidine
TMP: Thiamine monophosphate
TPP: Thiamine pyrophosphate
TTP: Thiamine triphosphate

Upper limit of normal Vitality ULN:

V:

von Willebrand factor vWF:

List of Tables

	Page
Table (1): Real-Time PCR MasterMix reagents (Applied Biosystems, USA)	70
Table (2): The thermal profile of Real-Time PCR	71
Table (3): The reference values of positive controls in Real-Time PCR	71
Table (4): Baseline demographics of the 160 recruited patients	74
Table (5): Clinical characteristics of the 160 recruited patients	75
Table (6): Viral kinetics in the studied groups	77
Table (7): Frequency of adverse events for pegylated interferon plus ribavirin in addition to folic acid and/or vitamin B complex	80
Table (8): Hemoglobin concentration (g/dl) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	83
Table (9): Total leukocyte count (x 10 ⁹ /L) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	86
Table (10): Absolute neutrophil count $(x10^3/\mu l)$ before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment.	89
Table (11): Platelet count (x10 ³ /L) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	92
Table (12): Alanine aminotransferase (U/L) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	95
Table (13): Aspartate Transaminase Count (U/L) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	98
Table (14): Total bilirubin level (mg/dl) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F) and the combination (Group BF) as well as at week 72 post-treatment	101

Table (15): Prothrombin time (second) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF)	104
Table (16): Serum creatinine (mg/dl) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	106
Table (17): Thyroid stimulating hormone (μ IU/ml) before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF)	108
Table (18): Physical functioning before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	111
Table (19): Role physical before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	113
Table (20): Body pain before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	115
Table (21): General health before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	117
Table (22): Physical component summary before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	119
Table (23): Vitality before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	125
Table (24): Social functioning before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	127
Table (25): Role emotional before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	129
Table (26): Mental health before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment	131

Table (27): Mental component summary before and during 48 weeks of treatment with the antiviral therapy alone (Group C) or with vitamin B complex (Group B), folic acid (Group F), and the combination (Group BF) as well as at week 72 post-treatment

133

List of Figures

Figure (1): Structure of folic acid	Page 22
Figure (2): Folate polyglutamates	22
Figure (3): Overview of folate metabolism, entry of folic acid and physiologic folates into the cell, and links to methylation reactions and nucleotide synthesis	26
Figure (4): Interrelation between folate, vitamin B ₁₂ and homocysteine metabolism	29
Figure (5): Thiamine	39
Figure (6): Pyridoxine	46
Figure (7): Chemical structure of Vitamin B12	51
Figure (8): Treatment regimen in four studied groups	65
Figure (9): Change in hemoglobin level throughout the study period	84
Figure (10): Change in total leukocyte count throughout the study period	87
Figure (11): Change in absolute neutrophil count throughout the study period.	90
Figure (12): Change in platelet count throughout the study period.	93
Figure (13): Change in alanine aminotransferase level throughout the study period.	96
Figure (14): Change in aspartate aminotransferase level throughout the study period.	99
Figure (15): Change in total bilirubin level throughout the study period.	102
Figure (16): Change in physical component summary throughout the study period.	120
Figure (17): Distribution of the four treatment groups according to their physical component summary (PCS) for 48 weeks.	123
Figure (18): Change in mental component summary throughout the study period.	134
Figure (19): Distribution of the four treatment groups according to their mental component summary (MCS) for 48 weeks.	137

Abstract

Background/Aims: Pegylated-interferon α-2a and ribavirin (PIFN/RBV), the current standard treatment for hepatitis C virus (HCV) infection in Egypt, is frequently associated with hematological adverse effects, leading to high treatment discontinuation rates. The objective of the present study is to explore the effectiveness of intervening with folic acid (F) and/or vitamin B complex (B) compared with placebo (C) in HCV-treatment Egyptian patients for the management of treatment-induced deterioration of health related quality of life (HRQOL) as well as hematological parameter.

Methods: In a randomized controlled trial, one hundred and sixty subjects were randomly assigned to receive PIFN/RBV in addition to BF, B, F, or C. Blood samples were collected at different time points during 48 weeks and at 12 and 24 weeks post treatment for complete blood count and for HCV RNA real time PCR. Short form SF 36V2 questionnaire were used to assess HRQOL at various time during and post treatment.

Results: Egyptian HCV patients treated with PIFN/RBV showed deterioration of HRQOL which were correlated with deterioration in the measured hematological parameter. Supplementation with vitamin B complex plus folic acid significantly (P<0.001) decreased the deterioration observed in physical and mental health as well as complete blood count. Supplementation with either vitamin B complex or folic acid were also effective but with lower potency than their combination.

Conclusion: BF supplementation can reduce adverse effects of PIFN/RBV therapy in chronic hepatitis C patients, which may improve patients' HRQOL and their adherence to combination antiviral therapy.

Keywords: Hepatitis C virus, Quality of life, Folic acid, Vitamin B complex, Peginterferon, Ribavirin

Introduction

Introduction

Hepatitis C is a worldwide health problem as approximately 180 million people are chronically infected. Chronic hepatitis C is considered a major cause of end-stage liver disease and hepatocellular carcinoma (Hoofnagle, 2002). Hepatitis C virus genotype 4 (HCV-4), which is prevalent in Egypt, Middle East and Africa, comprises approximately 20% of the world's HCV-infected population (Kamal and Nasser, 2008). Recently, HCV-4 started to cross borders and spread to several regions in Europe (Fernandez-Arcas et al., 2006), particularly among injecting drug users and patients co-infected with human immunodeficiency virus (HIV) (Roulot et al., 2007).

The disappointing sustained virological response (SVR) rates with conventional interferon alpha (IFN α) monotherapy or IFN α and ribavirin combination therapy (**Koshy et al., 2000**) led to the concept that HCV-4 was a 'difficult-to-treat' genotype. A steady improvement in the overall response rates of chronic HCV-4 to anti-hepatitis C therapy was achieved with the introduction of pegylated IFN α -2 (PIFN α -2) (**Kamal, 2009**).

In order to eradicate HCV from infected patients, the treatment with pegylated interferon alfa-2a or alfa-2b in combination with ribavirin (PIFN/RBV) has been widely used because its sustained virological responses rate is beyond 50% compared with interferon alone or interferon in combination with ribavirin (**Omata et al., 2005**). The clinical significance of this therapy is due to its effect in lowering serum HCV-RNA level and reducing the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (**McHutchison and Fried, 2003**).

Although this PIFN/RIB therapy seems effective and safe for hepatitis C, several side effects such as anemia, depression, severe weight loss and flu-like syndrome from this anti-HCV therapy have been reported (**Hung et al., 2006**; **Younossi et al., 2007**).

Anemia, neutropenia, leukopenia, and thrombocytopenia are among the numerous side effects of currently available HCV treatments (**Dusheiko et al., 1996**). Preliminary data suggest that the infection itself can also induce autoimmune hemolytic anemia, leukopenia, and thrombocytopenia (**Spivak, 2000**). These complications can influence HCV treatment and adherence, which could compromise outcomes (**Moccia et al., 2001**).

The most important factors in successful eradication of HCV are adherence to therapy and dose maintenance. However, combination therapy significantly increased the risk of dose modifications and discontinuations due to treatment-related adverse effects (Cummings et al., 2001), and, as has been observed clinically, dose modifications appeared to be less than optimal for HCV eradication. Thus, treatment success may be compromised by the adverse effects of HCV therapy (McHutchison, 2002).

Hepatitis C virus patients commonly experience fatigue, anxiety, and depression. These symptoms negatively affect patients' functional health, ability to work, self-perceived health, health related quality of life (HRQL) and well-being. Psychosocial issues and reduced HRQL are frequently experienced by HCV patients (**Kraus et al., 2003**). HCV patients have more HRQL impairment than the general population (**Spiegel et al., 2005**). There is some evidence that HCV patients who experience greater fatigue, greater psychiatric symptoms, and poorer HRQL are more likely to discontinue treatment prematurely with

its negative impact on virologic response (Bernstein et al., 2002). In addition to well-known side effects of interferon, one important determinant of HRQL during anti-viral therapy for HCV is development of ribavirin-induced anemia (Tod et al., 2005). Treatment of anemia improves HRQL, potentially impacting adherence to antiviral regimen and improving virologic response. These issues emphasize the importance of investigating the physical and psychosocial experiences and HRQL of HCV patients (Afdhal, 2004).

B vitamins including vitamin B_1 (thiamine), vitamin B_2 (riboflavin), vitamin B_6 (pyridoxine), vitamin B_{12} and folate are involved in many important physiological functions such as energy metabolism, protein biosynthesis and cell reproduction. If this therapy interferes with the metabolism of B vitamins, this therapy for HCV patients might lead to other healthy risk (**Lin and Yin, 2009**).

HCV infection led to the decline of vitamin B_6 , vitamin B_{12} and folate in HCV patients. Furthermore, this PIFN/RBV therapy not only decreased vitamins B_1 and B_2 in plasma and/or RBC but also exacerbated the depletion of vitamin B_6 . Apparently, HCV infection and this therapy worsened B vitamins status. It is known that vitamin B_2 affects epithelial integrity, rate of prostaglandin biosynthesis, and vitamin B_6 is a cofactor for many enzymes involved in metabolism (**Talwar et al., 2003**). Thus, the depletion of these vitamins in HCV patients with this therapy might impair many physiological functions and induce other complications. On the other hand, it has been documented that vitamins B_2 and B_6 could exhibit antioxidant activity *via* scavenging oxygen radicals and organic radicals. Thus, the decrease in vitamins B_2 and B_6 in these HCV patients also suggested that HCV infection and this PIFN/RBV therapy diminished their antioxidant defense (**Ksendzova et al., 2004**).