

شبكة المعلومات الجامعية







شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

### جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

#### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%



## بعض الوثائـــق الإصليــة تالفــة



# بالرسالة صفحات لم ترد بالإصل

Borro

#### STUDY OF THE RELATION BETWEEN SOME HEAVY METALS LEVELS IN HAIR AND CHANGES IN IQ AND PSYCOLOGICAL BEHAVIOR IN CHILDREN

#### THESIS

Submitted for partial fulfillment of Ms.C degree in

#### **Pediatrics**

By

Adel Kamal Ahmad Khodyer M.B.B, Ch.

Under Supervision of

Prof. Dr./ Mohammed Rashad

Ass. Professor of Pediatrics

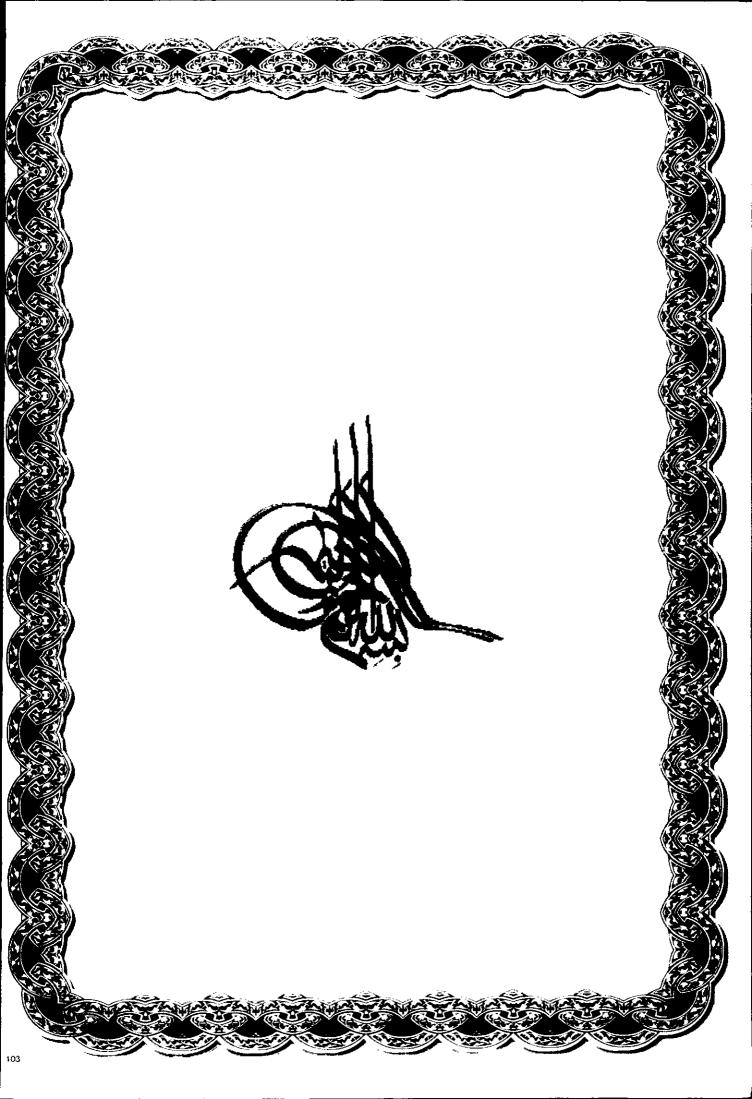
Benha faculty of medicine

Pediatrics Ass. Professor of Pediatrics nedicine Benha faculty of medicine

Prof. Dr./ Nour El Din Amin M

Professor of biological chemistry

N C R R T


Atomic Energy Authority

Dr./ Samir Abolmagd

Prof. Dr./ Nazih El Nady

Lecturer of psychiatry
Faculty of Medicine
Cairo University

Benha Faculty of Medicine Zagazig University



#### Acknowledgement

I would like to express my deepest thanks and extreme gratitude to my **Professor Dr. Mohammad Rashad** assistant professor of pediatrics Benha faculty of medicine, Zagazig University, for his constant encouragement and expert guidance.

I wish to express my sincere gratitude and deepest appreciation to Professor Dr. Nazih El Nady assistant professor of pediatrics Benha faculty of medicine Zagazig University. He devoted a lot of his precious time for every step of this work. Without his valuable help it would have been impossible to complete this work.

I would like to express my deep affection and gratitude to **Professor Dr.**Nour El Din Amin professor of biological chemistry in National Center for Radiation Research and Technology who kindly helped me in the laboratory work and in analysis of the results.

I wish to express my sincere appreciation and deepest gratitude to Dr. Samir Abolmagd lecturer of psychiatry faculty of medicine Cairo University for his guidance, advice and faithful supervision of this work.

Lastly my thanks can not be completed without my appreciation and gratefulness to **Dr. Ahmad Shafiek** in National Center for Radiation Research and Technology in analysis of samples

"Adel Kamal Khodyer"

| List of Contents                           | Page |
|--------------------------------------------|------|
| • Introduction and Aim of the work         | 1    |
| • Review of Literature                     | 3    |
| • Lead                                     | 3    |
| • Cadmium                                  | 26   |
| • Zinc                                     | 34   |
| • Copper                                   | 49   |
| Psychiatric review                         | 61   |
| Disruptive Behavior                        | 61   |
| Mental Retardation                         | 69   |
| • Attention Deficit Hyperactivity Disorder | 83   |
| ◆ Aggression                               | 95   |
| Subjects and Methods                       | 99   |
| • Results                                  | 106  |
| • Analysis of the Results                  | 120  |
| • Discussion                               | 123  |
| • Summary                                  | 142  |
| • Conclusion                               | 145  |
| • Recommendations                          | 146  |
| • References                               | 147  |
| ◆ Appendix                                 | 179  |
| • Arabic summary                           |      |

#### LIST OF TABLES

|            | Tables of literature                                                            | Page  |
|------------|---------------------------------------------------------------------------------|-------|
| Table-1:-  | Sources of lead exposure                                                        | 5     |
| Table-2:-  | Effects of chronic lead poisoning                                               | 22    |
| Table-3:-  | Treatment schedule of lead intoxication                                         | 24-25 |
| Table-4:-  | Zinc content in common food                                                     | 35    |
| Table-5:-  | Factors which will influence the intestinal uptake and transfer of zinc         | 38    |
| Table-6:-  | Mechanisms and conditions predisposing to dietary and systemic zinc deprivation | 47    |
| Table-7:-  | Clinical manifestations of severe human zinc deficiency                         | 48    |
| Table-8:-  | The principle mammalian cuproenzyme activities                                  | 52    |
| Table-9:-  | Predisposing factors to disruptive behavioral disorder                          | 62    |
| Table-10:- | Differential diagnosis of the disruptive behavioral disorder                    | 65    |
| Table-11:- | Classification of mental retardation according to intelligence                  | 72    |

|           | Table of the results                                                   | Page |
|-----------|------------------------------------------------------------------------|------|
| Table-1:- | Distribution of the studied groups according to residence              | 107  |
| Table-2:- | Distribution of studied groups according to socioeconomic status (SES) | 107  |

|             | Table of the results                                                                | Page |
|-------------|-------------------------------------------------------------------------------------|------|
| Table-3:-   | Weight, height and BMI among studied groups                                         | 108  |
| Table-4:-   | IQ and Total Aggression among studied groups                                        | 108  |
| Table-5:-   | Statistical analysis of Pb in studied hair samples                                  | 109  |
| Table-6:-   | Statistical analysis of Cd in studied hair samples                                  | 109  |
| Table-7:-   | Statistical analysis of Zn in studied hair samples                                  | 110  |
| Table-8:-   | Statistical analysis of Cu in studied hair samples                                  | 110  |
| Table-9:-   | Distribution of studied groups according to parent's job                            | 111  |
| Table-10:-  | Relation of IQ and Total aggression to parent's job                                 | 111  |
| Table-11:-  | Distribution of studied groups according to special habits                          | 112  |
| Table- 12:- | Relation of special habits to IQ and Total Aggression                               | 112  |
| Table-13:-  | Relation between the levels of hair's metals and the residence among studied groups | 113  |
| Table-14:-  | Serum levels of metals studied in control subjects                                  | 113  |
| Table-15:-  | Correlation studies between serum and hair levels of metals                         | 114  |
| Table-16:-  | Correlation studies between BMI to IQ, Total aggression and Pb                      | 114  |
| Table-17:-  | Correlation studies between hair levels of metals to IQ and Total aggression        | 115  |

•

|             | LIST OF Figures                                    | Page |
|-------------|----------------------------------------------------|------|
| Figure-1:-  | Residence among studied groups                     | 116  |
| Figure -2:- | Weight, height, BMI among studied groups           | 116  |
| Figure -3:- | IQ, total aggression among studied groups          | 117  |
| Figure -4:- | Pb, Cd among studied groups                        | 117  |
| Figure -5:- | Zn, Cu among studied groups                        | 118  |
| Figure -6:- | Correlation between Pb level and IQ score          | 118  |
| Figure -7:- | Correlation between Pb level and Total aggression. | 119  |
| Figure -8:- | Correlation between Pb level and BMI               | 119  |

•

đ

#### LIST OF ABBREVIATIONS

AAMR:- American Association of Mental Retardation.

AAS: - Atomic Absorption Spectrophotometry.

ADHD: - Attention Deficit Hyperactivity Disorder.

ALAD: - Amino Levulinic Acid Dehydratase.

**BAL: -** British Antilewiste.

δ**ALA:** - Delta Amino Levulinic Acid.

BMI: - Body Mass Index.

Cd: - Cadmium.

**CDC:** - Center for Disease Control.

CaNa<sub>2</sub>EDTA: - Calcium disodium ethylene diamine-tetracetic acid.

Cu: - Copper.

**DSD:-** Disruptive Behavioral Disorders

DSM-IV:- Diagnostic and Statistical Manual of Mental Disorders-

the fourth edition

**EDTA:** - Ethylene Diamine-Tetra acetic Acid.

**EP: -** Erythrocyte Protoporphyrine.

**FEP: -** Free erythrocyte Protoporphyrine.

ICD-10:- The 10<sup>th</sup> Revision of International Statistical

Classification of Diseases and related Health problems

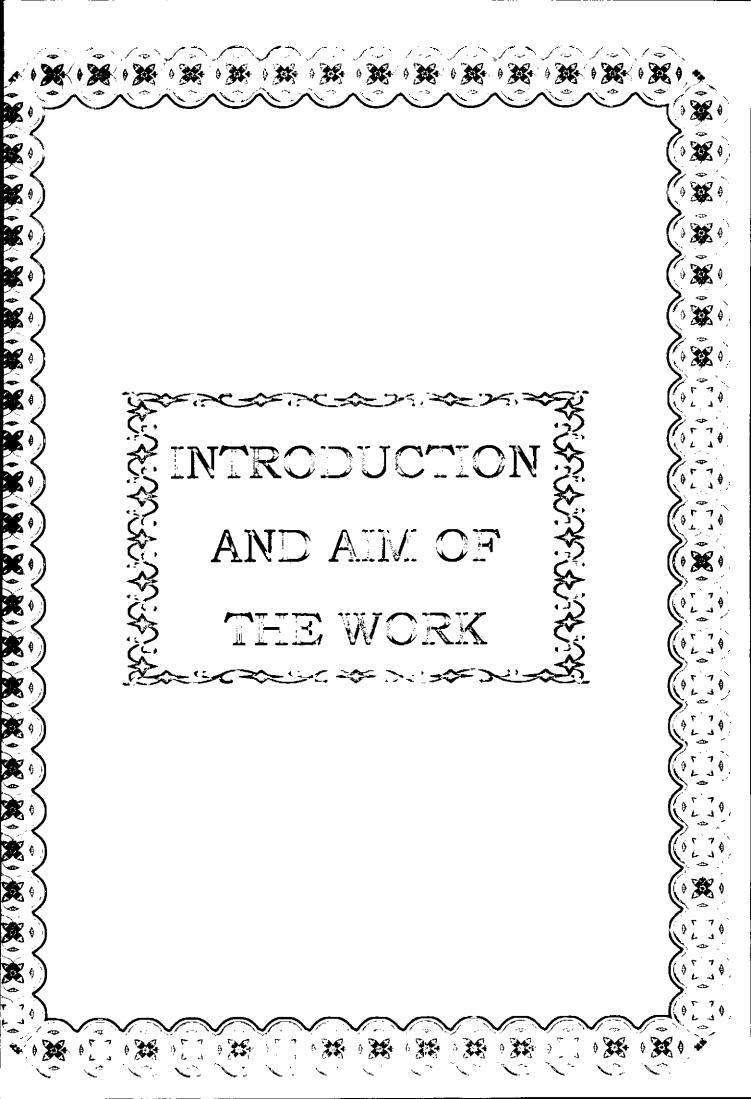
IQ: - Intelligence Quotient.

MR: - Mental Retardation.

NCRRT: - National Center for Radiation Research and Technology.

Pb: - Lead.

ppb: - Part per billion.


ppm: - Part per million.

Sb: - Still Birth.

μg/dl: - Microgram per deciliter.

WHO: - World Health Organization.

Zn: - Zinc.



#### INTRODUCTION

Increased urbanization and industrialization in many developing countries have resulted in atmospheric pollution and contaminant health problems. The determination of trace elements levels in hair has been a subject of continual interest in the biomedical and environmental sciences. The significance of such measurements as an indices for assessing nutritional status, diagnosis of intoxication and monitoring environmental exposure. (Cortes Toro et al., 1993)

Several reports have associated the presence of sub-toxic concentrations of various non-nutrient-metals with behavioral and learning disabilities in children. (Capel et al., 1981) Examination of hair is a good non-invasive method which should be used in screening studies of children living in high polluted areas. Since pollutants accumulate in hair reaching higher levels in children exposed to pollution than in those unexposed. (Chlopicka et al., 1995)

Several years ago there has been public concern that concentrations of lead which were previously considered to be safe in humans may be related to impaired performance by children on intelligence tests and to hyperactivity, other behavior disorders and poor attainment in school. (Needleman et al., 1979) Many children are considered to have behavioral problems before the diagnosis of lead poisoning is entertained. (Shannon and Graef, 1992) It is possible that many who do not progress to the stage of frank encephalopathy are never diagnosed and treated and