COMPARISON BETWEEN CORNEAL ABLATION DEPTH MEASURED BY ULTRASOUND, SCHEIMPFLUG AND OPTICAL COHERENCE PACHYMETRY AND ITS CORRELATION WITH REFRACTIVE OUTCOME IN MYOPIC LASER IN SITU KERATOMILEUSIS

Thesis
Submitted for Partial Fulfillment of MD Degree
In Ophthalmology

By

Caroline Atef Guergues Tawfik

M.B., B.Ch, M.Sc. Ain Shams University

Under Supervision of

Prof. Dr. Osama Abdel Monem Raslan

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Prof. Dr. Bahaa Eldin Abdallah Aly

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University Cairo- Egypt 2012

Acknowledgement

Though only my name appears on the cover of this thesis, yet a great many people have contributed to its production. I owe my gratitude to all those people who made it possible and enriched my experience.

Firstly and foremost I'd like to thank my supervisors Prof. Dr. Ossama Raslan, and Prof. Dr. Bahaa El Dine Abdallah. I was fortunate to have them for they gave me the freedom to pursue what interests me, and at the same time provided guidance, support and advice.

My deepest gratitude goes to my mentor; Prof. Dr. Ismail Hamza for his selfless support and valuable input, and allowing me the opportunity to collect data from his patients.

Special thanks go to Assistant Professor Dr. Ahmed Hosni for his help in the early phases of this thesis, though he was unable to continue with us.

Last but not least, I'm indebted to my family members; my forever-supportive husband; **Adel**, my parents, my extended family, my brother and the world's best daughter **Taline** for their love, patience and support. It would not have been possible without them.

Contents

Title	Page No.
List of Figures	i
List of Tables	iv
List of Graphs	vi
List of Abbreviations	vii
Introduction	1
Aim of the work	4
Review:	
Chapter 1: Anatomy and Physiology of Co	rnea5
Chapter 2: Laser-in-situ keratomileusis	21
Chapter 3: Pachymetry	35
Patients and Methods	46
Results	61
Discussion	81
Summary	94
Conclusion	98
References	100
Arabic Summary	

List of Figures

Fig. No.	Description	Page No.
1	Gross anatomy of the cornea	6
2	Normal Cornea	7
3	Confocal biomicroscopy of the human cornea	8
4	Electron microscopy of the corneal stroma	13
5	Pressure relationships at the endothelium	16
6	Normal Corneal endothelium	18
7	Potential factors leading to endothelial decompensation	19
8	The corneal flap is lifted superiorly with curved forceps	27
9	Determination of corneal thickness	39
10	Snapshot of the Wavelight EX500 interface	44
11	Magnified image of the built-in pachymeter	44
12	Microkeratome used Moria M2	47
13	The Wavelight EX500 excimer laser system	47

14	TOMEY pachymeter SP 3000	50
15	Oculus Pentacam	51
16	Corneal flap is gently raised	54
17	Stromal bed is exposed	55
18	Patient is looking at the light target	55
19	A microsponge used to protect the corneal flap during excimer laser application	56
20	Excimer laser application	56
21	Irrigating the corneal stromal bed with BSS	57
22	Floating the corneal stromal flap into position	57
23	Flattening the flap using microsponges	58
24	Corneal pachymetry using three different techniques for eyes that underwent LASIK treatment	64
25	Comparison between mean corneal flap thickness by USP and OCP	65
26	Comparison between the mean ablation depth by USP and intended ablation depth	68
27	Comparison between the mean ablation depth	68

	by OCP and intended ablation depth	
28	Comparison between the mean ablation depth by SP and intended ablation depth	69
29	Comparison between mean corneal thickness after flap repositioning and 3 months postoperatively by USP	70

List of Tables

Table No.	Description	Page No.
1	Ectasia Risk score determination	34
2	Ectasia Risk rating	34
3	Methods of corneal pachymetry	37
4	Distribution of gender and age in the studied patients who underwent myopic LASIK treatment	61
5	Comparison between gender of the studied patients and the mean age	62
6	Preoperative refractive data of eyes that underwent LASIK treatment	62
7	Corneal Pachymetry using three different techniques that underwent LASIK therapy	64
8	Comparison between mean flap thickness by USP and OCP	65
9	Comparison between pre and post operative central corneal thickness that underwent LASIK treatment	66
10	Comparison between the deviation in corneal	67

	ablation depth measured by the three techniques from the intended ablation depth for eyes that underwent LASIK treatment	
11	Descriptive statistics of the Deviation of the measured ablation depth by the three studied techniques from the intended ablation depth	69
12	Comparison between mean corneal thickness after flap repositioning and three months postoperative by USP	70
13	Postoperative refractive data of eyes that underwent LASIK treatment	71
14	Comparison between pre and postoperative refractive data of eyes that underwent LASIK treatment	72
15	Comparison between mean refractive error 3 months after operation and the mean intended refractive correction	73
16	Comparison between MRSE at day 1 and month 3 postoperatively	73
17	Correlation between the difference in corneal depth by the three techniques and the intended ablation for the eyes with the refractive error after three months (MRSE) after operation	74

List of Graphs

Graph No.	Description	Page No.
1	Bland-Altman plot for agreement between USP and SP preoperatively	75
2	Bland-Altman plot for agreement between USP and OCP preoperatively (Before flap creation)	76
3	Bland-Altman plot for agreement between USP and OCP after flap reflection	77
4	Bland-Altman plot for agreement between USP and OCP at end of ablation	78
5	Bland-Altman plot for agreement between USP and OCP after flap repositioning	79
6	Bland-Altman plot for agreement between USP and SP 3 months postoperatively	80

Abbreviations

ABT Asymmetrical bow-tie
AMO Advanced Medical Optics
ATP Adenosine triphosphate
ATPase Adenosine triphosphatase
BCVA Best corrected visual acuity
BSS Balanced salt solution
CCT Central corneal thickness
D Dioptre
FDA Food and Drug Administration
FFKC Forme fruste keratoconus
g Gram
GAG Glycosaminoglycans
HMP Hexose monophosphate
Hz Hertz
IGF-1 Insulin-like growth factor 1
IOL Intraocular lens
IOP Intraocular pressure
IP Imbibition pressure
IS Inferior steepening
J Joule
KHz Kilo hertz

LASER...... Light amplification by stimulated emission of radiation LASIK Laser in situ keratomileusis LoA..... Limits of agreement MHz..... Mega hertz mJ Milli joule MK..... Microkeratome mm..... Millimeter mmHg Millimeter Mercury MRSE Manifest refraction spherical equivalent n.....Nano NADPH Nicotinamide adenosine dinucleotide phosphate hydrogen nJ Nanojoule nm......Nanometer ns Nanosecond OCP Optical coherence pachymetry OCT Optical coherence tomography OLCR Optical low coherence reflectometry PCI..... Partial coherence interferometry PRK Photorefractive keratectomy RI.....Refractive index

rpm...... Rotation per minute

RSB Second

SBT..... Symmetrical bow-tie

SD..... Standard deviation

SE Spherical equivalent

SP.... Scheimpflug pachymetry

SPSS Statistical Package for Social Sciences

SRA Skewed radial axis

UDVA Unaided distance visual acuity

US Ultrasound

USP Ultrasound pachymetry

UV Ultraviolet

W Watt

Corneal thickness is a key factor at all stages of a refractive correction (*Wang et al, 1999*). The volume of tissue removal determines the refractive change, and corneal thickness provides structural support (*Roberts, 2000*). Ablations deeper than planned may lead to overcorrections and inadequate residual corneal thickness, which may increase the risk of postoperative keratectasia (*Binder, 2007*).

In respect to the stability criteria of the cornea, corneal pachymetry often decides whether laser in situ keratomileusis (LASIK), epithelial LASIK, laser-assisted epithelial keratectomy, or PRK can be safely performed or whether a retreatment can be offered (*Lackerbauer et al*, 2009).

Several instruments are available to measure the corneal thickness with varying degrees of accuracy. Ultrasound (US) pachymetry is commonly used to measure central corneal thickness (CCT) because it is easy to use and relatively inexpensive and has been considered the gold standard for CCT measurement. Disadvantages of US pachymetry include the need to anesthetize the cornea, cornea—probe contact, corneal indentation and the possible compression effect during measurement, and corneal surface disturbance. There is also the risk for corneal epithelial damage and transmission of infections (*Ho et al*, 2007). In addition, measurements can vary as a result of probe misalignment or decentering and the probe may not be

perpendicularly aligned or may be inaccurately positioned because of a lack of fixation and gaze control (*de Sanctis et al*, 2007).

Until recently, there was no possibility to measure corneal thickness during refractive corneal surgery. This has changed with the integration of low-coherence interferometry into excimer laser systems. With this new device, very fine structures in the eye can be detected through an interferometric principle. The significant advantages of online pachymetry are the high resolution in micrometer range, no requirement of contact with the cornea and the continuous measurement of corneal thickness during the surgical procedure (*Wirbelauer et al, 2003*). In addition to ease of use, ability to evaluate the flap morphology in a wide area, direct visualization of the flap-stroma interface and precise measurement of the flap thickness (*Sun et al, 2012*).

Individual intraoperative measurements of corneal thickness appear to be desirable for the safe assessment of corneal thickness during LASIK and maintenance of a minimum residual stromal bed (RSB). (*Giledi et al*, 2004).

Furthermore, online monitoring of the central laser ablation has the potential to provide online pachymetry. The opportunity for an online adjustment based on the online pachymetric data may be a great step toward optimizing refractive outcomes in the future (*Lackerbauer et al*, 2009).

Corneal laser refractive patients often have high expectations in terms of the accuracy of postoperative refractive outcomes. More accurate ablation of stromal tissue is assumed to lead to improved refractive outcomes (*Lackerbauer et al*, 2009).

Routine use of OCP could improve the safety of LASIK procedures.