

IMPACT OF HYPERNATREMIA & HYPONATREMIA IN CRITICALLY ILL PATIENTS

thesis by:

Saad Fouad Abdel Monem, M.B.B.ch.

Faculty of medicine - Cairo University

Submitted for:

Fulfillment of master degree of critical care medicine Under supervision of:

Dr. Khaled Abd Elwahab Selim, MD

Assistant professor of critical care medicine Faculty of medicine, Cairo University

Dr. Ahmed Yehia Zakaria, MD

Lecturer of crítical care medicine

Faculty of medicine, Cairo University

Dr. Ayman Ahmed Heikal, MD

Lecturer of critical care medicine

Faculty of medicine, Cairo University

Faculty of Medicine Cairo University 2013

<u>Acknowledgement</u>

First and foremost, thanks to ALLAH, the most merciful and the greatest beneficent.

I would like to express my great appreciation to Prof. Dr. Khaled Abdel Wahab, assistant Professor of critical care medicine, Faculty of Medicine, Cairo University; for his sincere effort, valuable advice and great confidence that he gave me throughout the whole work. His time and supreme effort are clear in every part of this work.

I am deeply grateful to Dr. Ahmed Yehia, Lecturer of critical care medicine, for his great directions all through the work & continuous advice.

I would like to express my appreciation to Dr. Ayman Heikal, Lecturer of critical care medicine, for his meticulous supervision and efforts to complete this work.

Finally no words can express the warmth of my feelings to my wife for her support and patience.

ABSTRACT

IMPACT OF HYPERNATREMIA & HYPONATREMIA IN CRITICALLY ILL PATIENTS

Dr. Khaled Abd Elwahab Selím, MD, Dr. Ahmed Yehía Zakaría, MD, Dr. Ayman Ahmed Heíkal, MD

and Saad Fouad Abdel Monem, M.Sc.

Department of critical care medicine, Faculty of medicine, Cairo University

Abstract: *Background:* - Hyponatremia & hyperntremia are common in patients admitted in intensive care unit (ICU) with prevalence approaching 20-30%. Recent data reveal that both hypo-and hypernatremia present on admission to or developing in the ICU are independent risk factors for poor prognosis

Objective:- Relation of sodium disorders to length of ICU stay, Duration of mechanical ventilation and Mortality in ICU.. **Methods:** - study was conducted on 400 patients admitted in a medical-surgical ICUs in Kasr AL Aini Teaching hospital during the period from 1 st of July 2011 till December 2011. All patients admitted to the ICU during the period of the study were included. **Exclusion criteria** 1. Patients stay less than 24-hours in the ICU.2. Patients who received renal replacement therapy during their ICU admission. Patients who experienced multiple sodium disturbances (hypernatremia & hyponatremia) during their ICU stay. The following data will be collected, Demographic (age, sex), Clinical (admission diagnosis, admission Acute Physiology and Chronic Health Evaluation (APACHE) II score, Vital signs 12-lead ECG and Serum Na: Measure serum sodium directly using ion-specific electrodes to eliminate the pseudohyponatremia, laboratory artifact seen in hyperproteinemia and hyperlipidemia. Serum sodium is measured at 12-hr interval.

Results: Our results demonstrate that hyponatremia and hypernatremia are common in critically ill patients. We identified 137 (34.25 ½) patients with hyponatremia and 63 (15.75½) patients with hypernatremia. We could observe that increasing APACHE II scores, fluid balance disturbances, and mechanical ventilation are associated with ICU sodium disturbances. Patients with hypernatremia and hyponatremia had higher APACHE II scores compared with eunatremic patients (19, 15 and 10, respectively p=0.001). Our results are in agreement with the report of Stelfox et al in 2008. The length of ICU stay was

longer in hypernatremic and hyponatremic patients compared with eunatremic patients (14 and 11 versus 5 days,respectively, p= 0.0001). There were higher incidence of mortality in patients with hypernatremia (39.7%) and hyponatremia (19%) compared with eunatremic group (13%) (p= 0.0001). An observation is that patients with hypernatremia carry the highest mortality risk. *Conclusion:*Our study confirmed the association between sodium disturbances and poor survival outcomes among critically ill patients. Our data indicates that hypernatremia and hyponatremia were independent risk factors that affect the length of stay and mortality in the ICU.

Key words:- Hyponatremia , hyperntremia & APACHE II score

Contents

•	Introduction & aim of the work		1
•	Chapter 1: Sodium homeostasis	••	4
•	Chapter 2: Hyponatremia		25
•	Chapter 3: Hypernatremia		61
•	Chapter 4: Dysnatremia in critically ill patients		81
•	Patients and methods	(94
•	Results :	10)0
•	Discussion:	1	22
•	Conclusion & recommendations	13	31
•	Summary	1	L33
•	References	13	35
•	Arabic summary		

<u>List of Tables</u>

No.	Table title	Page
1-1	Body fluid distribution in relation to age and sex	5
1-2	molar concentration of electrolytes Within the body fluid spaces	5
1-3	Average daily water gain and Loss in adults	6
1-4	Daily sodium chloride intake and loss	6
1-5	Vasopressin receptor location and functions	10
1-6	Factors, conditions, and drugs that alter renal water excretion by changing the level or renal action of vasopressin (ADH)	12
2-1	Volume status and common etiologies of major classes of hyponatremia	32
2-2	Differences between syndrome of inappropriate ADH secretion and cerebral salt wasting syndrome	34
2-3	Common Known Causes of the Syndrome of Inappropriate Antidiuresis	37
2-4	Diagnosis of SIAD	40
2-5	Vasopressin receptor antagonists	56
3-1	Classification and causes of hypernatremia	65
3-2	The causes of central diabetes insipidus	67
3-3	Causes of nephrogenic diabetes insipidus	68
3-4	CLASSIFICATION OF GESTATIONAL DIABETES INSIPIDUS	70

<u>List of Figures</u>

No.	Figure title	Page
1-1	Osmoreceptor-ADH feedback.	9
1-2	Relationship between plasma vasopressin and osmolality	11
1-3	Neuroanatomy of the hypothalamus	14
1-4	Inputs controlling thirst	15
1-5	Pseudocolor images of positron emission tomography	16
1-6	The juxtaglomerular apparatus	19
1-7	Summary of the renin-angiotensin system and the stimulation of aldosterone secretion by angiotensin II	20
1-8	Pathways by which sympathetic nerves regulate renal sodium excretion	22
1-9	Mechanism whereby nitric oxide increases sodium excretion in response to extracellular fluid volume expansion	24
2-1	Extracellular Fluid and Intracellular Fluid Compartments under Normal Conditions and during States of Hyponatremia	27
2-2	Effects of Hyponatremia on the Brain and Adaptive Responses	28
2-3	Summary of the four different patterns of AVP secretion in SIADH	38
2-4	diagnostic algorithm of hyponatremia	46
2-5	Brain cell adaptaion in hyponatremia	48
3-1	Extracellular-Fluid and Intracellular-Fluid Compartments under Normal Conditions and during States of Hypernatremia	62
3-2	Water homeostasis and Pathophysiology of hypernatremia	63
3-3	Effects of Hypernatremia on the Brain and Adaptive Responses	73
3-4	Diagnostic algorithm for hypernatremia	74
3-5	Cell volume regulation in acute and chronic hypernatremia and during acute correction.	79

Abbreviations

ACE Angiotensin-converting enzyme

ADH Antidiuretic hormone

AIDS Acquired immune deficiency syndrome

AQP Aquaporin

ANP Atrial Natriuretic Peptide

ARC AIDS-related complex

AVP Arginine Vasopressin

AVPR2 Arginine vasopressin receptor 2

BNP Brain Natriuretic Peptide

CHF Congestive heart failure

CNS Central Nervous System

COPD Chronic obstructive pulmonary disease

CSW Cerebral Salt Wasting

DDAVP Desmopressin acetate

EABV Effective arterial blood volume

EAH Exercise-associated hyponatremia

ECF Extra-Cellular Fluid

ECV Extracellular Volume

GFR Glomerular Filtration Rate

HHS Hyperosmolar hyperglycemic syndrome

ICF Intra-Cellular Fluid

ICU Intensive Care Unit

IDDM Insulin dependent diabetes mellitus

JG Cells Juxtaglomerular Cells

LOS Length of stay

MV Mechanical ventilation

NDI Nephrogenic diabetes insipidus

NIDDM Non insulin dependent diabetes mellitus

NSAIDs Nonsteroidal anti-inflammatory drugs

Posm Plasma Osmolarity

SIADH Syndrome of Inappropriate Antidiuretic Hormone

TURP Transurethral resection of the prostate

VRAs Vasopressin receptor antagonists

VWF Von Willebrand Factor

Introduction

Introduction

Hyponatremia & hyperntremia are common in patients admitted in intensive care unit (ICU) with prevalence approaching 20-30%. Recent data reveal that both hypo-and hypernatremia present on admission to or developing in the ICU are independent risk factors for poor prognosis (Rosner MH& Ronco C, 2010).

The imperative to develop strategies to detect, prevent or correct ICU-acquired sodium disorder is made clearer by a series of recent reports demonstrating a strong, independent correlation between the development of dysnatremia and poor outcome (Funk GC et al.,2010).

Hypernatremia a water balance disorder encountered in about 6 to 9% of critically ill patient, has been associated with an increased risk of death and complication in some recent retrospective studies in general intensive care units (Stelfox HT et al.,2008).

Because thirst is powerful protective mechanism, restricted access to water is nearly always necessary for the development of hypernatremia. Several factors can predispose patient in ICU to hypernatremia: the administration of hypertonic sodium bicarbonate solution; renal water loss through a concentrating defect from renal disease or the use of diuretics or solute diuresis from glucose or urea in patients on high protein feeds or in a hypercatabolic state

Hyponatremia is the most common electrolyte disorder and, depending on the definition and frequency of testing, has recently been reported to occur in about 30-40% of hospitalised patients (**Upadhyay A et al.,2006**).

For hyponatremia to develop, a relative excess of water in conjunction with underlying condition that impair the kidney's ability to excrete water is required. Stimuli for the release of arginine vasopressin (AVP) and hence impairment of water excretion are so frequent in

hospitalized patient, especially in those in the ICU, that virtually all patients are at risk of hyponatremia. Thus, the most important factor resulting in hospital-acquired hyponatremia is administration of hypotonic fluids to a patient with impaired urine-diluting capacity (Ayus JC et al.,2008).

Treatment of either hypo or hypernatremia can be associated with serious complications, particularly if rapid correction is done. Therefore, slow correction is a must in the treatment (*Stelfox et al.*, 2008).

Aim of the work

To study relation of sodium disorders to:

- 1. Length of ICU stay.
- 2. Mechanical ventilation.
- 3. Mortality in ICU.

Chapter 1: Sodium homeostasis

SODIUM HOMEOSTASIS

The body contains 45-75% by weight of water; the range reflects the differences in body composition between the different demographic groups, male and female, young and old. Adipose tissue contains up to 10% water; lean tissue contains 70-75% water. In young adult males, body water is about 60% of body weight and in young adult females, who have a higher percentage of body weight as fat, about 50%. With age, the proportion of body weight made up of water decreases because lean tissue mass declines and tends to be replaced with adipose tissue. In the newborn, the figure is nearer 80-85% owing to a relative expansion of the extracellular fluid (ECF) volume (*lain Campbell*,2009).

Two main fluid spaces exist – the intracellular fluid (ICF) and the extracellular fluid (ECF). The latter is further separated into the intravascular space (plasma volume), the interstitial space (which includes lymph) and transcellular fluid, which is formed by the transport activity of cells: pleural, pericardial, peritoneal, cerebrospinal and gastrointestinal fluids. **Table (1-1)** summarizes the water content of the body and the distribution of fluid between the main body spaces: the proportion of body water to total body weight is affected by age, gender and fat content (Michael D. Penney,2008).

Intracellular Fluid Compartment

About 28 of the 42 liters of fluid in the body are inside the 75 trillion cells and are collectively called the intracellular fluid. Thus, the intracellular fluid constitutes about 40 percent of the total body weight in an "average" person.

The fluid of each cell contains its individual mixture of different constituents, but the concentrations of these substances are similar from one cell to another. In fact, the composition of cell fluids is remarkably similar even in different animals, ranging from the most primitive microorganisms to humans. For this reason, the intracellular fluid of all the different cells together is considered to be one large fluid compartment (Guyton AC and Hall JE ,2006).