Correlation between Brain Type Natriuretic Peptide Level and Severity of Coronary Artery Disease in Patients with Non-ST Elevation Acute Coronary Syndrome and Normal Left Ventricular Function

Thesis
Submitted for Partial Fulfillment of Master
Degree in Cardiology

By
Gaith Ibrahim Jabbar
M.B.Ch.B

Under supervision of

Dr. Ahmed Mohamed Onsy

Assistant Professor of Cardiology Ain Shams University

Dr. Mostafa Ahmed El-Nozahi

Lecturer of Cardiology Ain Shams University

Faculty of Medicine Ain Shams University 2015

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Ahmed Mohamed Onsy,** Assistant Professor of Cardiology Ain Shams
University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mostafa Ahmed El-Mozahi**, Lecturer of Cardiology Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Gaith Ibrahim Jabbar

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of literature	
 Non ST elevation acute coronary syndrome 	4
Brain natriuretic peptide	44
Subjects and Methods	55
Results	62
Discussion	80
Summary	86
Conclusions	89
Recommendations	90
References	91
Arabic summary	

List of Tables

Table No	o. Title	Page	No.
Table (1):	Possible non-acute coronary syndrome cause troponin elevation (bold: important difference)	rential	
Table (2).	diagnoses)		11
Table (2):	non-ST-elevation acute coronary syndromes		15
Table (3):	Mortality in hospital and at 6 months in intermediate, and high risk categories in re-	low, egistry	
Table (4).	populations, according to the GRACE risk sco		
Table (4): Table (5):	Common Differences Between BNP and NT-pr Grey Zone Age-Related Values for BNP and		44
Table (3).	proBNP		54
Table (6):	Age distribution of the study population		
Table (7):	Gender distribution of study population		
Table (8):	Frequency and percentage of coronary		
	disease risk factors among study population		63
Table (9):	Comparison of CAD risk factors between pa with unstable aniga and patients with NSTEM		64
Table (10):	Comparison of BNP level between patients		
() .	unstable angina versus those with NSTEMI		65
Table (11):	Comparison of clinical and echocardiographi		
	in relation to BNP level.		67
Table (12):	Comparison of Gensini score between g	groups	
	divided according to BNP level.		72
Table (13):	Diffrence of some categorical clinical var		- 4
Table (14):	between groups divided according to BNP level Diffrence of some categorical angior variables between groups divided according to	aphicl	74
	level.		
Table (15):	Correlation of BNP level with other factors		77

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Athersclerotic plaque in ACSFlow sheet summarizing the synthesian-type natriuretic peptide (BNF terminal (NT)-proBNP in the ventre the prespective property.	thesis of c) and N- icle from
Figure (3):	the pre-proBNP Gender distribution of study populat	
Figure (4):	Dyslipidemia distribution among	
rigure (4).	angina and ST elevation MI	
Figure (5):	Brain Natriuretic petptide B in patie unstable angina and patients with	ents with
	Elevation Mocardial Infarction	
Figure (6):	Age difference between groups as according to BNP level.	
Figure (7):	CK level diffrence between grou	ıps as
	divided according to BNP level	68
Figure (8):	CK-MB level diffrence between gr	roup as
Figure (9):	LV end diastolic dimension of between groups as divided according	lifference
	level.	70
Figure (10):	Left ventricular end systolic d diffrence between groups divided a	according
Figure (11).	to BNP Levels.	
Figure (11):	LV ejection fraction diffrence betwee divided according to BNP level	
Figure (12):	Gensini score between groups according to BNP level	divided
Figure (13):	Gender difference between groups	
118010 (10).	according to BNP level.	
Figure (14):	_	groups

List of Figures cont...

Fig. No.	Title Page No	٥.
Figure (15):	Difference of Left anterior descending artery involvment between groups as divided according to BNP level.	76
Figure (16):	Difference of Multivessel affection between both groups according to BNP level.	
Figure (17):	Correlation of CK level with BNP level	
•	Correlation of CK-MB level with BNP level	
_	Correlation of BNP level with Gensini score	

List of Abbreviations

Abb.	Full term
ACE	Angiotensin converting enzyme
	Acute coronary syndrome
	angiotensin-receptor blocker
	Brain natriuretic peptide
	Blood pressure
	Coronary bypass graft
	coronary artery disease
	Calcium Channel Blocker
	Canadian Cardiovascular Society
CHF	Congestive heart failure
CK	Creatine kinase
CK-MB	Creatine kinase isoenzyme MB
CMR	Cardiac magnetic resonance
	Chronic obstructive pulmonary disease
CPG	Committee for Practice Guidelines
CrCl	creatinine clearance
CRP	C-reactive protein
CRT	Cardiac resynchronization therapy
	Computed tomography
	Corrected TIMI frame count
	Dual antiplatelet therapy
	Diabetes Mellitus
	electrocardiogram
	estimated glomerular filtration rate
	Glycoprotein IIb/ IIIa
	Global Registry of Acute Coronary Events
GS	
HF	
	High sensitivity C-reactive protein
	Left anterior decending artery
	Left bundle branch block
	Left circumflex artery(LCX)
LDL-C	Low density lipoprotein cholesterol

List of Abbreviations cont...

Abb. Full term	
I MCA Left main coronavy automy	
LMCA Left main coronary artery	
LMWHLow Molecular Weight Heparin	
LVLeft ventricle	
LVEDD Left ventricular end diastolic diameter	
LVEF Left ventricle ejection fraction	
LVESD Left ventricular end systolic diameter	
MACE Major adverse cardiac events	
MI Myocardial infarction	
MRI Magnetic resonance imaging	
MVD Multivessel disease	
MVO 2 Myocardial oxygen consumption	
NSTE-ACS Non ST elevation acute coronary syndrome	
NSTEMI Non ST elevation myocardial infarction	
NT-proBNP: N terminal prohormone brain natriuretic peptide	e
PCIPercutaneous coronary intervention	
RCARight coronary artery	
STEMIST-elevation myocardial infarction	
TIMI Thrombolysis in Myocardial Infarction	
UAUnstable Angina	
UFH Unfractionated heparin	

Introduction

operational term that refers to a spectrum of conditions compatible with acute myocardial ischemia and/or infarction that are usually due to an abrupt reduction in coronary blood flow. A key branch point is ST-segment elevation or new left bundle-branch block on the electrocardiogram (ECG), which is an indication for immediate coronary angiography to determine if there is an indication for reperfusion therapy to open a likely completely occluded coronary artery. Separate committee for practice guidelines (CPGs) have been developed for ST-elevation myocardial infarction (STEMI) (O'Gara et al., 2013).

The absence of persistent ST-elevation is suggestive of Non ST elevation acute coronary syndrome (NSTE-ACS) except in patients with true posterior myocardial infarction MI. NSTE-ACS can be further subdivided on the basis of cardiac biomarkers of necrosis (eg, cardiac troponin,). If cardiac biomarkers are elevated and the clinical context is appropriate, the patient is considered to have Non ST elevation myocardial infarction (NSTEMI) (Newby et al., 2012); otherwise, the patient is deemed to have unstable angina (UA). ST depression, transient ST-elevation, and/or prominent T-wave inversions may be present but are not required for a diagnosis of NSTEMI. Abnormalities on the ECG and elevated troponins in isolation are insufficient to make the diagnosis of ACS but must be

interpreted in the appropriate clinical context. Thus, UA and NSTEMI are closely related conditions whose pathogenesis and clinical presentations are similar but vary in severity.

The conditions differ primarily by whether the ischemia is severe enough to cause myocardial damage leading to detectable quantities of myocardial injury biomarkers.

The term "possible ACS" is often assigned during initial evaluation if the ECG is unrevealing and troponin data are not yet available. UA can present without any objective data of myocardial ischemic injury (normal ECG and normal troponin), in which case the initial diagnosis depends solely on the patient's clinical history and the clinician's interpretation and judgment. However, with the increasing sensitivity of troponin assays, biomarker-negative ACS (ie, UA) is becoming rarer (Braunwald and Morrow, 2013).

AIM OF THE WORK

The aim of this work is to assess the relationship between the level of BNP and the severity of coronary artery disease as assessed by Gensini score in patients who have unstable angina and non ST elevation myocardial infarction with normal left ventricular systolic function.

Chapter One

NON ST ELEVATION ACUTE CORONARY SYNDROME

Pathophysiology

actors involved in the pathophysiology of NSTE-ACS (Stone et al., 2011) include the following:

1) Supply-demand mismatch

The myocardial ischemia of unstable angina, like all tissue ischemia, results from excessive demand or inadequate supply of oxygen, glucose, and free fatty acids.

2) Plaque disruption

Accumulation of lipid-laden macrophages and smooth muscle cells, so-called foam cells, occurs within atherosclerotic plaques. The oxidized low-density lipoprotein cholesterol (LDL-C) in foam cells is cytotoxic, procoagulant, and chemotactic. As the atherosclerotic plaque grows, production of macrophage proteases and neutrophil elastases within the plaque can cause thinning of the fibromuscular cap that covers the lipid core.

Increasing plaque instability, coupled with blood-flow shear and circumferential wall stress, leads to plaque fissuring or rupture especially at the junction of the cap and the vessel wall.

._____ 4 _____

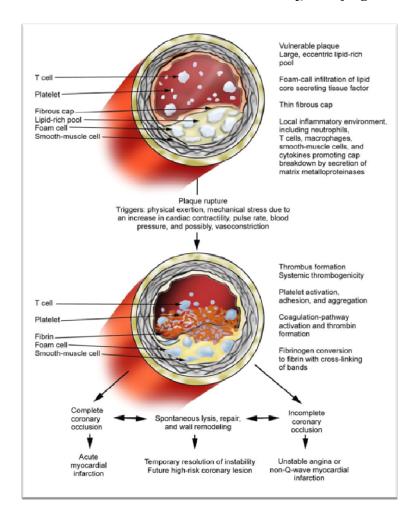


Figure (1): Athersclerotic plaque in ACS.

3) Vasoconstriction and thrombosis

Most patients with ACS have recurrent transient reduction in coronary blood supply because of vasoconstriction and thrombus formation at the site of atherosclerotic plaque rupture. These events occur as consequences of episodic platelet aggregation and complex interactions among the vascular wall, leukocytes, platelets, and atherogenic lipoproteins.

Exposure of subendothelial components provokes platelet adhesion and activation. Platelets then aggregate in response to exposed vessel wall collagen or local aggregates (eg, thromboxane and adenosine diphosphate). Platelets also release substances that promote vasoconstriction and production of thrombin.

ACS may involve a clot in flux (ie, forming and enlarging, chipping off and embolizing). Over time, this dynamic clot formation or lysis, in conjunction with coronary vasoreactivity and resistance in the microvascular bed, causes intermittent and alternating (or cyclical) occlusion and flow.

Clinical presentation

The clinical presentation of NSTE-ACS encompasses a wide variety of symptoms. Traditionally, several clinical presentations have been distinguished:

- Prolonged (>20 min) anginal pain at rest
- New onset (de novo) angina: Class II or III of the Classification of Canadian Cardiovascular Society (CCS) (Campeau, 1976).
- Recent destabilization of previously stable angina with at least Canadian Cardiovascular Society Class III angina characteristics (crescendo angina).
- Post-MI angina