List of Contents

Title	Page
List of Abbreviations	i
List of Tables	iv
List of Figures	V
Introduction	
Aim of the Work	
Review of Literature	
Hemodialysis Prescription	4
CKD Complications	30
CKD in Egypt	60
Patients and Methods	
Results	75
Discussion	
Summary and Conclusion	101
Recommendations	
References	107
Arabic Summary	1

List of Abbreviations

AIC Arterial intimal calcification

AMC Arterial medial calcification

AVF Arteriovenous fistula

BFU-E Burst forming unit- erythroid

CAPD Continuous ambulatory peritoneal dialysis

CERA Continuous erythropoietin receptor activator

CKD Chronic kidney disease stage

CLD Chronic liver disease

COPD Chronic obstructive pulmonary disease

CPG Clinical practice guidelines

CRP C- reactive protein

CV Cardiovascular

CVS Cerebrovascular stroke

DA Darboepoetin-alfa

DFR Dialysate flow rate

DM Diabetes mellitus

DMT1 Divalent metal transporter 1

DOPPS Dialysis Outcomes and Practice Patterns Study

ERBP European best practice

EPO Erythropoietin

ESA Erythropoiesis stimulating agents

ESRD End stage renal disease

EUTox European uremic toxin

List of Abbreviations (cont.)

GN Glomerulonephritis

HAMP Hepcidin antimicrobial peptide

HB Hemoglobin

HBV Hepatitis B virus

HCV Hepatitis C virus

HD Hemodialysis

HDF Hemodiafiltration

HIV Human immunodefiiency virus

HMWH High molecular weight heparin

HTN Hypertension

IHD Ishemic heart disease

INF Interferon

KDOQI Kidney Disease Outcome Quality Initiative

KDIGO Kidney disease improving global outcomes

KoA The mass transfer area coefficient

KUF Ultrafiltration coefficient

MOH Ministry of health

MPG-EPO Methoxy polyethylene glycol-epoetin beta

MPO Membrane permeability outcome

PTH Parathormone

PTX Parathyroidectomy

PVD Peripheral vascular disease

QB Dialyzer blood flow

List of Abbreviations (cont.)

QIP Quality improvement programs

QOL Quality of life

rHuEPO Recombinant human erythropoietin

ARIC Atherosclerosis risk in community

RKF Residual kidney function

SLE Systemic lupus erythematosis

spKt/V Single poolKt/V

SRI Solute removal index

TNF Tumor necrosis factor

UF Ultrafiltration

URR Urea reduction ratio

USRDS United States Renal Data System

VDRA Vitamin D receptor activators

β2M Beta 2-microglobulin

IPD Intermittent peritoneal dialysis

List of Tables

Table N	o Title	Раде
	Review	
Table 1:	Components of the Dialysis Prescrip	otion5
	Results	
Table 1:	Baseline characteristics of study pop	oulation75
Table 2:	Causes of ESRD and associated co-	-morbidities
	in study population	77
Table 3:	HD data of study population	78
Table 4:	Dialysis duration, URR, dry weight	and average
	interdialytic weight gain in study po	opulation84
Table 5:	Complications during HD session in	study
	population	84
Table 6:	Laboratory investigations during la	ast 6 months
	in study population	85
Table 7:	Management of anemia in study po	pulation86
Table 8:	Management of CKD-MBD in stud	y population
		86

List of Figures

Figure No	Title Title	Page		
Review				
Figure 1:	Relationships between membrane	efficiency		
	and clearance and blood flow	rates in		
	hemodialysis	14		
Figure 2:	Current proportional contribution of	the most		
	common causes of end-stage renal	disease in		
	Egypt in comparison with two Nort	th African		
	countries	63		
Results				
Figure 1: (Gender distribution in study populatio	on76		
Figure 2: V	Work status in study population	76		
Figure 3: I	Dependency status in study population	n76		
Figure 4: (Causes of ESRD in study population.	78		
Figure 5: 0	Co-morbidities in study population	78		
Figure 6:	Frequency of HD sessions/week	in study		
	population	81		
Figure 7: I	Ouration of HD session in study popu	lation81		
Figure 8: S	Sponsoring status in study population	82		

List of Figures (cont.)

Figure No	o Title	Page
Figure 9: V	Vascular access in study population	82
Figure 10:	Access failure in study population	82
Figure 11:	Viral status in study population	83
Figure 12:	Dialyzer used by study population	83
Figure 13:	Dialysate used by study population	83
Figure 14:	: Use, type and dose of anticoagulant ir	ı study
	population	84
Figure 15:	Complications during HD session	85
Figure 16:	Mean hemoglobin levels during last 6	months
	in study population	86
Figure 17:	Ca, PO4 and Ca x PO4 product levels	during
	last 6 months in study population	86
Figure 18:	Blood transfusion in study population	88
Figure 19:	ESA use, types and doses in study pop	ulation
		88
Figure 20:	Iron and vitamins use in study population	on88
Figure 21:	Phosphate binders used by study popula	tion 89
Figure 22:	Use and dose of vitamin D analogues	90

Introduction

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (*Locatelli et al.*, 2004).

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate (*Eknoyan et al*, 2002).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al.*, 2004).

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care, at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (*Cameron*, 1999).

End-stage renal disease (ESRD) is one of the main health problems in Egypt. Currently, hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5), previously called ESRD or chronic renal failure (*Afifi and Karim*, 1999).

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services (*Ministry of Health and Population*, 1999).

Aim of the Work

To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt (Cairo governorate: sector C) and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.

Hemodialysis Prescription

Introduction

Fifty years ago, Belding Scribner and his colleagues at the University of Washington developed a blood-access device using Teflon-coated plastic tubes, which facilitated the use of repeated hemodialysis (HD) as a life-sustaining treatment for patients with uremia (*Coresh J et al.*, 2005).

The introduction of the Scribner shunt, as it became known, soon led to the development of a variety of surgical techniques for the creation of arteriovenous fistulas and grafts. Consequently, hemodialysis has made survival possible for more than a million people throughout the world who have end-stage renal disease (ESRD) with limited or no kidney function (*Jonathan and Ikizler*, 2010).

HD therapy has been one of the true success stories in the annals of medical science. Before the availability of this treatment, the diagnosis of kidney failure was a death sentence (*Butman and Nissenson*, 2005).

Optimal care of the patient receiving long-term HD requires broad knowledge of the HD technique and appropriate prescription according to patient- and device-dependent variables (*Ikizler and Schulman*, 2005).

Unfortunately, despite major advances in the technology of

HD and in the management of its complications, the morbidity and mortality of patients on dialysis remain high, at a time that the incidence and prevalence of kidney failure persistently are increasing. Hence, the early and continued concern with the adequacy of dialysis (*Eknoyan*, 2005).

The dialysis prescription

The variables in the HD prescription that may be manipulated by the physician on the basis of clinical assessment are listed in Table 1.

Table 1: Components of the Dialysis Prescription

Dialyzer (membrane, configuration, surface area)

Time

Blood flow rate

Dialysate flow rate

Ultrafiltration rate

Dialysate composition

Dialysate temperature

Anticoagulation

Intradialytic medications

Dialysis frequency

From Himmelfarb J, Chuang P, Schulman G (2008): Hemodialysis. In: Brenner BM. Brenner and Rector's the Kidney, 8^{th} ed, Philadelphia:Saunder, pp. 1957-2006.

1) Dialyzers

The dialyzers are calssified either according to it's synthetic material into: cellulose, modified cellulose or synthetic polymers or according to it's hydrokinetics into High-Flux & Low-Flux Dialyzers. All dialyzers in clinical use are of the hollow-fiber type

with membranes of cellulose, modified cellulose or synthetic polymers (*Ronco and Clark*, 2005).

The use of cellulose and its derivatives, cuprophane and cellulose acetate, is in decline. The side groups of the cellulosic membranes activate the complement system via the alternate pathway, resulting in the repeated generation of the anaphylatoxins C3a and C5a (*Kaplow and Goffinet*, 1986).

Synthetic membranes differ from cellulose-based dialyzers in several ways. All cellulose membranes have hydroxyl radicals at the surface that increase their hydrophilicity (membrane wetability). Techniques that mask hydroxyl radicals enhance hydrophobicity and increase protein adsorption (*Mujais and Schmidt*, 1995).

The creation of larger pore size semipermeable membranes in compact cartridges (high-flux dialyzers), with variable sizes of these pores, enhanced their ability to remove small solutes and middle molecules (*Vanholder et al.*, 2010).

High-flux dialyzers allow the passage and removal of retained solutes of higher molecular weight than do low-flux membranes. Dialyzers are considered as high-flux type if their ultrafiltration coefficient (KUF) exceeds 15 ml/h/mmHg and their ability to clear β 2-M exceeds 20 ml/min (low-flux dialyzer clears KUF <15 ml/h/mmHg and β 2-M < 10 ml/min) (*Alp Ikizler and Schulman, 2005*). However, the fluids (dialysate and water) used

with these high-flux dialyzers should be sterile non-pyrogenic and endotoxin free in order to avoid reverse filtration of endotoxins and blood contamination (*Henderson*, 1993).

The efficiency and flux are not related to each other. Thus, high efficiency membranes can be either high flux (large surface area and large pores) or low flux (large surface area but small pores), and low efficiency membranes can also be either low flux or high flux (*Ambalavanan et al.*, 1999).

Conventional and high efficiency HD techniques, using low-flux dialyzers, are incapable of removing larger sized uremic toxins and/or protein-bound toxic molecules of > 500 Dalton. This would result in their accumulation in circulation where they can exert concentration- dependent toxicity, particularly on endothelium and cardiovascular system. Examples of these molecules include uridine adenosine tetraphosphate endothelin, which exert vasoconstrictive effect, indoxyl sulfate and p-cresylsulfate – p-cresol, which has pro-inflammatory effect and cause endothelial dysfunction together with the proinflammatory cytokines, and has been associated with increased cardiovascular mortality (Vanholder et al., 2003).

Other retained molecules which are known to cause harmful effects include β 2-M, immunoglobulin light chains, parathyroid hormone, advanced glycation end products and advanced oxidation products (*Calo ey al.*, 2007).

Beta 2-microglobulin, which is considered a surrogate marker of middle molecules, is strongly associated with carpal tunnel syndrome and dialysis-related amyloidosis. Different studies have documented the efficiency of high-flux dialyzers in removing β 2-M from the circulation of patients on dialysis, which has been associated with clinical and radiological improvement of carpal tunnel syndrome and dialysis-related amyloidosis (*Wizemann et al.*, 2001).

Observational studies have documented the improvement of survival rates of patients on high-flux-dialyzers when compared with those on low-flux dialyzers. These findings have been confirmed by two large randomized clinical trials: the HEMO study and the MPO study (*Hornberger et al.*, 1992).

In the entire cohort in the HEMO Study, the high-flux arm had no significant effect on the all-cause mortality rate or any of the four arm secondary outcomes. However, the high-flux HD provided significantly less cardiac and cerebrovascular mortality rates after 3.7 years HD than low-flux HD (*Delmez et al.*, 2006).

The Membrane Permeability Outcome (MPO) study, which was conducted in Europe, showed higher survival rate in high-flux HD patients with low serum albumin (≤ 4 g/dl) and diabetic patients (*Locatelli et al.*, 2009).

Following these two major studies, the European Best Practice Guidelines have recommended the use of high-flux