

DEVELOPMENT OF AN AUXILIARY HYDROMECHANICAL TRANSMISSION CONTROL SYSTEM

A thesis Submitted in partial fulfillment of the requirements of the Master of Science degree in Mechanical Engineering

By

Mohamed Konsowa Abo Elfotouh Beda

B.Sc. in Mechanical Engineering Applied Mechanics Engineering 2007

Supervised By

Dr. Nabila ShawkyElnahas

Dr. Mohammad Ahmad Abdelaziz

Dr. Mohamed Aly Mohamed Metwally

Cairo, 2016

Name: Mohamed Konsowa Abo Elfotouh Beda

Thesis title: "Development of an auxiliary hydromechanical transmission control system"

Degree: Master of science in mechanical engineering department

EXAMINERS COMMITTEE

Name	Signature
Dr. Ahmed Salah Abo Elazm	
Assistant Professor, Automotive department	
Military Technical College	
Prof.Nabil Abd Elaziz Mahmoud	
Emeritus Professor, Mechanical power Engineering Department, Ain Shams University	
Prof. Taher Gamal Eldin Abo Elyazed	
Professor of Design and Production Engineering	

STATEMENT

This thesis is submitted as partial fulfillment of Master of Science degree in Mechanical Engineering (automotive), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Student name: Mohamed Konsowa Abo Elfotouh Beda	
Signature:	
Date:	

Researcher Data

Name : Mohamed Konsowa Abo Elfotouh Beda

Date of birth : Mars., 8, 1984

Place of birth : Menoufia, Egypt

Academic Degree : B.Sc in Mechanical Power Engineering

Field of specialization : Applied Mechanics.

University issued the

degree

: Faculty of Engineering, Menoufia

University, Egypt.

Date of issued degree :2007

Abstract

The scope of this thesis is to study the failures in the control system of a hydro-mechanical transmission used in earth moving equipment and introduce an auxiliary system to overcome some types of these failures. The auxiliary system is used to re-engage the transmission to make the machine mobile to get it to the workshop or to drive it towards a truck to be transported to the workshop. The proposed solution will avoid long down times and will also reduce the cost of transportation of the malfunctioning machine.

A 936F Caterpillar wheel loader is selected as a case study and a lab setup is implemented where the speed selector with one set of gears is used to demonstrate the proposed solution. An experimental test is designed to validate the proposed solution to assure the properties of the system. A mathematical model is developed to simulate the dynamics of the proposed system. The experimental results are used to validate the simulation results and both showed good agreement.

The proposed solution showed reliable results where it managed to overcome some of the possible control valve failures using the developed electro hydraulic system with external hydraulic power supply through a separate directional control valve. The developed mathematical model of the proposed system can be utilized to simulate other types of failures along with a full machine model.

The proposed auxiliary system will have a good economic impact on the cost of moving malfunctioning machines as well as its effect of the machine down type which directly affects the machine productivity.

ACKNOWLEDGEMENT

First of all, I am so grateful to Allah all might for giving me the guidance strength, patience, and hope to finish my research. It mercy of Allah, and my trust in Him that have made such a dream to become a reality.

I would like to thank my advisor, **Dr. Mohamed Abdelaziz**, for his continuous guidance, encouragement and follow the work and its progress, for giving me the advice along the research period, and for facilitating the work in the lab.

I give many thanks for my advisor, **Dr. Mohamed Aly Mohamed Metwally**, for his inspiring guidance, valuable advice, and suggestions, criticism, and patience have been a great asset.

I am also grateful to the member of my thesis committee, **Dr. Nabila ShawkyElnahas**, for her time and support.

Many Thanks go to my colleagues and friends for their help during my thesis. Last but not least, I would like to thank my family for their patience, care, and love that supported me a lot.

Contents

Contents	v
List of Figures	X
List of Tables	xiv
Nomenclature	xv
List of symbols	xvi
Chapter 1 Introduction	1
1.1 Introduction	1
1.2 Hydraulic drive transmission	2
1.2.1 Hydrostatic transmission	2
1.2.2 Hydrodynamic transmission	4
1.2.2.1 Fluid coupling and torque converter	4
1.2.2.2 Multiple disk clutch	6
1.3 Construction and operation of hydro mechanical transmission with gear	-
1.3.1 Types of failures in the hydro mechanical transmission	8
1.3.2 Case study of machine down time	10
1.4 The aim of the present work	10
1.5 Thesis outline	11
Chapter 2 literature survey	13
2.1 Introduction	13
2.2 Hydrodynamic transmission	13
2.3 Torque converter	16

2.4 Hydraulic control valve	17
2.5 Multiple disk clutch	20
2.6 Task definition	22
Chapter 3 Experimental work	23
3.1 Introduction	23
3.2 System operation of 936 wheel loaders power train	24
3.2.1 Torque converter of 936 wheel loaders	25
3.2.2 Power flow through torque converter	26
3.2.3 Planetary transmission	28
3.2.4 Power flow through transmission in first speed forward	29
3.2.5 Transmission hydraulic control	31
3.2.5.1 Transmission hydraulic control at starting the engine (transmission in neutral)	32
3.2.5.2 Transmission hydraulic controls at first speed forward	35
3.3 Test rig construction	38
3.4 Experimental Measurements	48
3.4.1 Test rig experimental results	48
Chapter 4 Mathematical model	52
4.1 Introduction	52
4.2 Mathematical model for auxiliary control module	52
4.2.1 Forces acting on the solenoid	53
4.2.2 Flow equations	54
4.2.3 Continuity equations	55
4.2.4 Actuator equation of motion	56
4.2.5 Mathematical model simulation and results	57

4.3 Comparison between experimental and simulation results	63
Chapter 5 Conclusions and recommendations for future work	65
5.1 Conclusions	65
5.2 Recommendations for future work	65
References	66
Appendix A. Existing Transmission Types	69
A.1 Introduction to transmission systems	69
A.1.1 Manual Transmission	69
A.1.2 Automatic Transmission	70
A.1.3 Continuously Variable Transmission	71
A.1.4 AMT Transmission	72
A.1.4.1 Single-Sided Clutch Transmission	72
A.1.4.2 Double-Sided Clutch Transmission	73
A.1.4.3 Dual Clutch Transmission forward	73
A.2 Internal Combustion Engine Characteristics	75
Appendix B. Transmission Operation And Its Components	77
B.1 Torque Converter	77
B.1.1 Torque Converter And Pump Drive Housing	78
B.1.2 Torque Converter Hydraulic System	79
B.1.2.1 Torque Converter Ratio Valve	80
B.1.2.2 Converter Outlet Relief Valve	81
B 2 Transmission Hydraulic System	82

B.2.1 Power Train Oil Cooler	84
B.3 Planetary Transmission	85
B.3.1 Second Speed Forward	86
B.3.2 Third Speed Forward	87
B.3.3 Fourth Speed Forward	87
B.3.4 First Speed Reverse	88
B.3.5 Second Speed Reverse	90
B.3.6 Third Speed Reverse	90
B.3.7 Fourth Speed Reverse	91
B.4 Planetary Lubrication	92
B.5 Transmission Neutralizer Group	93
B.6 Output Transfer Gears	94
B.6.1 Output Transfer Gear Lubrication	97
B.7 Front and Rear Axle Groups	97
Appendix C. Type Of Failures In The Hydro Mechanical Transmi Troubleshooting	
C.1 Introduction	99
C.1.1 Visual Checks	99
C.1.2 Checks During Operation	100
C.1.3 Check List During Operation	101
C.1.3.1 Transmission Troubleshooting Problem List	101
C.1.3.2 Transmission Troubleshooting	103
C.1.3.3 Nospin Differential Test	108
Appendix D. Simulation Parameters	111
D.1 Simulation Parameters	

Appendix E. Mapping	113
E.1 Mapping Of Speed Sensor	113
E.2 Pressure Transducer Sensor Mapping	114
Appendix F. Datasheets	117
F.1 Hydraulic Pump Datasheet	117
F.2 Direction Control Valve Datasheet	118
F.3 Pressure Transducer Sensor Datasheet	119
F.4 Proximity RPM Sensor Datasheet	120

List of Figures

Fig.1.1. Hydrostatic drive with four wheel motors	3
Fig.1.2. Hydrostatic drive circuit.	3
Fig.1.3. Fluid coupling.	5
Fig.1.4. Torque Converter	6
Fig.1.5. Multiple-disk clutch.	7
Fig.1.6. Transmission circuit.	8
Fig.3.1. Presents the power train of loader 936	25
Fig.3.2.Torque converter components.	27
Fig.3.3. Planetary transmission.	28
Fig.3.4.Power flow through first speed forward	30
Fig.3.5.Transmission hydraulic controls (Neutral, Engine Off)	31
Fig.3.6.Transmission hydraulic controls (Neutral, Engine Running	g)34
Fig.3.7.Transmission hydraulic controls (first speed forward)	37
Fig.3.8. Operating system in test rig.	38
Fig.3.9. Hydraulic pump	39
Fig.3.10 phase AC electric motor	40

Fig.3.11. Relief valve
Fig.3.12. One set hydraulic transmission clutch
Fig.3.13. One set hydraulic transmission clutch
Fig.3.14. One set hydraulic transmission clutch
Fig.3.15. 3 Phase AC motor
Fig.3.16.4/3 Direction control valve
Fig.3.17.Measuring devices
Fig.3.18. Pressure transducers sensor
Fig.3.19. RPM sensor
Fig.3.20. Arduino mega
Fig.3.21.Experimental test rig
Fig.3.22.Dynamic response of the engaged pressure of the first speed by electro hydraulic control valve
Fig.3.23.Dynamic response of the speed of the first gear train engaged by electro hydraulic control valve
Fig.3.24. Experimentally Dynamic response of the first speed by auxiliary electro hydraulic control valve
Fig.4.1. Electro hydraulic system used to control the first gear train52
Fig.4.2. Flow through directional control valve ports54

Fig.4.3. The hydraulic system simulink diagram
Fig.4.4. The simulation of equation of motion of valve spool58
Fig.4.5. The simulation of flow rates through the valve restriction areas.58
Fig.4.6. The simulation of continuity equation to the cylinder chambers.59
Fig. 4.7.The simulation of actuator equation of motion60
Fig.4.8.Dynamic response of the electrohydraulic control valve solenoid and actuator displacement of the first gear train engaged61
Fig.4.9.Dynamic response of the electrohydraulic control valve solenoid and actuator velocity of the first gear train engaged
Fig.4.10.Dynamic response of the engaged pressure of the first speed62
Fig.4.11. Experimental and simulation pressure with time63
Fig.4.12. Experimental and simulation RPM with time
Fig.A.1. Comparison between different types of transmissions72
Fig.A.2. Ideal performance characteristics for vehicular power plants76
Fig.A.3. Performance characteristics of a gasoline engine
Fig.B.1. Torque converter
Fig.B.2. Torque converter and pump drive housing79
Fig.B.3. Torque converter hydraulic system80

Fig.B.4. Location of the torque converter ratio valve	81
Fig.B.5. Converter outlet relief valve.	82
Fig.B.6. Hydraulic system schematic	83
Fig.B.7. Transmission oil cooler schematic	84
Fig.B.8. Planetary transmission components	86
Fig.B.9. Power flow in first speed reverse.	90
Fig.B.10. Planetary lubrication.	93
Fig.B.11. Transmission neutralizer group.	94
Fig.B.12.Output transfer gears	96
Fig.B.13. Typical illustration of the front and rear axle groups	98
Fig.C.1.Test procedure for nospin differential.	109
Fig.E.1 Speed sensor mapping curve	114
Fig.E.2 Pressure transducer sensor mapping curve	115