

"Synthesis and Characterization of Some lanthanide Complexes and its Application in the Determination of Some Doping Drugs"

A Thesis

Submitted for the Degree of Doctor of Philosophy of Science.

(Inorganic and Analytical Chemistry)

Presented by

Sheta Mohamed Sheta

B. Sc. General Chemistry (2004) M.Sc. (Inorganic, Physical, Analytical Chemistry) (2010)

Supervised By

Prof. Dr. Mona Abd Elaziz Ahmed Prof. Dr. Mokhles M. Abd-Elzaher

Professor of Analytical Chemistry Professor of Inorganic Chemistry

Prof. Dr. A. B. Farg Dr. Mohamed Said Attia

Professor of Analytical Chemistry Assit. Prof. of Analytical Chemistry

Dr. Ahmed Osman Yossuf

Assit. Prof. of Analytical Chemistry

2015

Approval Sheet

"Synthesis and Characterization of Some lanthanide Complexes and its Application in the Determination of Some Doping Drugs"

A thesis presented by

Sheta Mohamed Sheta

B. Sc. General Chemistry (2004) M. Sc. (Inorganic, Physical, Analytical Chemistry) (2010)

Submitted for the Degree of Doctor of Philosophy of Science.

(Inorganic and Analytical Chemistry)

Approved by:

1. Prof. Dr. Ragaa El Sheikh Shoheib

Professor of Analytical Chemistry -Faculty of Science – Elzakazik University

2. Prof. Dr. Magda Ali Abd Elaziz Akl

Professor of Analytical Chemistry - Faculty of Science - Mansoura University

3. Prof. Dr. Mona Abd Elaziz Ahmed

Professor of Analytical Chemistry -College of Women for Arts, Science and Education, Ain Shams University

4. Prof. Dr. Mokhles M. Abd-Elzaher

Professor of Inorganic Chemistry, National Research Centre.

Approval stamp
/ / 2015
Approval of Faculty Council
/ / 2015
Date of approval
/ / 2015

DEDICATION

I would like to dedicate this thesis to my father and mother and thank them for their helping me in all household matters and encouraging me to finish my studies. Also I would like to dedicate this thesis to my sisters and brothers and thank them for the support and love along the way and for convincing me of the value of education. Finally, I would like to dedicate this thesis to my Wife, Asmaa, and thankful for her love, patience, and understanding me, and to my loving daughter, Rawan Sheta, Logain Sheta, Rattal Sheta whose keep me happy all the time.



Sheta Mohamed Sheta

"Synthesis and Characterization of Some lanthanide Complexes and its Application in the Determination of Some Doping Drugs"

Supervised by

1. Prof. Dr. Mona Abd Elaziz Ahmed

Professor of Analytical Chemistry -College of Women for Arts, Science and Education, Ain Shams University

2. Prof. Dr. Mokhles M. Abd-Elzaher

Professor of Inorganic Chemistry, National Research Centre.

3.Prof. Dr. A. B. Farag

Professor of Analytical Chemistry - Faculty of Science – Helwan University

4.Dr. Mohamed Said Attia

Assit. Prof. of Analytical Chemistry -Faculty of Science – Ain Shams University

5. Dr. Ahmed Osman Yossuf

Assit. Prof. of Analytical Chemistry -Faculty of Science – Ain Shams University

APPROVED

Head of Chemistry Department Prof. Dr.

QUALIFICATIONS

Student Name: Sheta Mohamed Sheta Mohamed

Scientific Degree: M.Sc. (Inorganic, Physical and Analytical Chemistry)

Department: Chemistry

Name of Faculty: Faculty of Science

University: Helwan University

B.Sc. Graduation Date: May 2004

M.Sc. Graduation Date: 2010

ACKNOWLEDGMENTS

The author thank Allah for his help to finish this work, and the author would like to express his deepest gratitude to his advisors: Professor Mona Abd Elaziz Ahmed (Professor of Analytical Chemistry, College of Women for Arts, Science and Education, Ain Shams University); Professor Mokhles M. Abd-Elzaher (Professor of Inorganic Chemistry, Department of Inorganic Chemistry, National Research Centre); Professor A. B. Farg (Professor of Analytical Chemistry, Faculty of Science, Helwan University); Dr. Mohamed Said Attia, and Dr. Ahmed Osman Yossuf (Assit. Prof. of Analytical Chemistry, Faculty of Science, Ain Shams University) for their timely advice, guidance, support, and patience throughout the years. The author greatly indebted to them for suggesting the problems, continuous supervision, fruitful discussions, daily late in the work during this work and help throughout the development of the thesis.

Sheta Mohamed Sheta

Aim of the work

This thesis aims to synthesis and characterize some novel lanthanide complexes (Europium - Terbium - Samarium); and also to study their applications in determination of some doping drugs (such as testosterone, hydrochlorothiazide) using a simple, fast and sensitive Spectrofluorimetric analytical technique. The proposed method is successfully validated for the routine analysis of these drugs in pharmaceutical formulations and biological fluids samples.

	List of Contents	page
List of Co	ontents	a
List of Fi	gures	e
List of Ta	ables	i
List of Al	bbreviation	k
	Chapter 1	
1.0	Introduction and Literature Review	page
1.1.	Doping Drugs	1
1.1.1.	Doping: history, current status and future	1
1.1.2.	Qualitative validation in doping analysis	3
1.1.3.	The 2015 Prohibited List World Anti-Doping Code	4
1.1.3.1.	What is the prohibited list?	4
1.1.3.2.	The 2014 prohibited list classifications	4
1.2.	Introduction for Spectrofluoremetry	8
1.2.1.	Spectrofluoremetric technique	8
1.2.2.	Theory of fluorescence	9
1.2.3.	The fluorescence process	9
1.2.4.	Some applications of fluorimetry	11
1.3.	Physical properties of lanthanide(III) ions	13
1.3.1.	Electronic energy levels	13
1.3.2.	Absorption	13
1.3.3.	Luminescence	14
1.3.4.	Luminescent lanthanide complexes	15
1.3.4.1.	Coordination chemistry of lanthanide ions	15
1.3.4.2.	Energy transfer	16
1.3.4.3.	Applications of energy transfer	18
1.4.	Literature Review	22
1.4.1.	Anabolic steroids	22
1.4.2.	Diuretics	23
1.5.	Abstract	24

Chapter 2

2.0	Experimental	page
2.1.	Chemicals and reagents	38
2.2.	Instruments	40
2.3.	Procedures	42
2.3.1.	Preparation of Stock Solutions	42
2.3.1.1	Preparation of Stock Solutions of the ligands	42
2.3.1.2.	Preparation of Stock Solutions of the Lanthanides Nitrates	43
2.3.1.3.	Preparation of Stock Solutions of Drug Standards	43
2.3.2.	Preparation of Complexes	44
2.3.3.	Determination of doping drugs in pharmaceutical preparations	44
2.3.4.	Spectrofluorimetric method	45
2.3.4.1.	Preparation of doping drugs solutions	45
2.3.4.2.	Calibration curve	45
2.3.4.3.	Determination of doping drugs in pharmaceutical preparations	46
2.3.4.4.	Determination of doping drugs in serum samples	46
2.3.4.5.	Determination of doping drugs in urine samples	47
	Chapter 3	
3.0	Results and Discussion	page
3.1. P	art I: Introduction and characterization of the	ligands
3.1.1.	Introduction	48
3.1.2.	Characterizations of the ligands (1-4)	49
3.1.2.1.	Characterization of ACAC	49
3.1.2.2.	Characterization of Bipy	54
3.1.2.3.	Characterization of BINOL	58
3.1.2.4.	Characterization of TC	62

3.2. Part II: Characterizations of the Eu(III) Complexes and their Application

3.2.1.	Characterizations of the Eu(III) complexes (1-3)	66
3.2.1.1.	Absorption spectra of the complexes (1-3)	66
3.2.1.2.	IR spectrum of the complexes (1-3)	69
3.2.1.3.	¹ H-NMR spectrum of the complexes (1-3)	74
3.2.1.4.	Molar conductivity of the complexes (1-3)	78
3.2.1.5.	Magnetic measurements of the complexes 1-3	78
3.2.1.6.	Mass spectra of the Complex 3	78
3.2.1.7.	Elemental Analysis of the Complexes (1-3)	80
3.2.2.	Some Applications on the determination of some doping drugs using	85
	Eu(III) Complexes (1-3)	
3.2.2.1	Spectral Characteristics.	86
3.2.2.2	Effect of experimental variables.	88
3.2.2.3	Analytical Performance and Method Validation.	91
3.3. P	art III: Characterizations of the Tb(III) Complexe	s and
	their Application	
3.3.1.	Characterizations of the Tb(III) complexes (4-6)	97
3.3.1.1.	Absorption spectra of the complexes (4-6)	97
3.3.1.2.	IR spectrum of the complexes (4-6)	100
3.3.1.3.	¹ H-NMR spectrum of the complexes (4-6)	106
3.3.1.4.	Molar conductivity of the complexes (4-6)	110
3.3.1.5.	Magnetic measurements of the complexes (4-6)	110
3.3.1.6.	Mass spectra of the Complex 4	110
3.3.1.7.	Elemental Analysis of the Complexes (4-6)	110
3.3.2.	Some Applications on the determination of some doping drugs using	118
	Tb(III) Complexes (4-6)	
3.3.2.1.		120
3.3.2.1. 3.3.2.2.	Tb(III) Complexes (4-6)	120 122

3.4. Part IV: Characterizations of the Sm(III) Complexes and their Application

3.4.1.	Characterizations of the Sm(III) complexes (7-10)	130
3.4.1.1.	Absorption spectra of the complexes (7-10)	130
3.4.1.2.	IR spectrum of the complexes (7-10)	134
3.4.1.3.	¹ H-NMR spectrum of the complexes (7-10)	141
3.4.1.4.	Molar conductivity of the complexes (7-10)	147
3.4.1.5.	Magnetic measurements of the complexes (7-10)	147
3.4.1.6.	Mass spectra of the Complex 8	147
3.4.1.7.	Elemental Analysis of the Complexes (7-10)	147
3.4.2.	Some Applications on the determination of some doping drugs using	156
	Sm(III) Complexes (7-10)	
	Summary	157
	References	160
	Arabic Summary	

List of Figures

Figure 1.1	Physical Effects of Drug Use.	2
Figure 1.2	Jablonski diagram illustrating the processes involved in the	9
	creation of an excited electronic singlet state by optical	
	absorption and subsequent emission of fluorescence.	
Figure 1.3	Energy diagram comparing fluorescence and phosphorescence.	11
Figure 1.4	Jablonski diagram for sensitized emission of lanthanide ions by a	17
	sensitizer.	
Figure 1.5	Homogenous flouroimmunoassays (Mathis G., et al., 1998).	21
Figure 3.1	keto - enol forms of Acetylacetone (ACAC).	49
Figure 3.2	The electronic absorption spectrum of ACAC.	50
Figure 3.3	IR spectrum of ACAC.	52
Figure 3.4	¹ H-NMR spectrum of ACAC.	53
Figure 3.5	Structure of 2, 2'-Bipyridine (Bipy).	54
Figure 3.6	The electronic absorption spectrum of Bipy.	55
Figure 3.7	IR spectrum of Bipy.	56
Figure 3.8	¹ H-NMR spectrum of Bipy.	57
Figure 3.9	Structure of 1, 1'-Bi-2-naphthol(BINOL).	58
Figure 3.10	The electronic absorption spectrum of BINOL.	59
Figure 3.11	IR spectrum of BINOL.	60
Figure 3.12	¹ H-NMR spectrum of BINOL.	61
Figure 3.13	Structure of Tetracycline-HCl(TC).	62
Figure 3.14	The electronic absorption spectrum of TC.	63
Figure 3.15	IR spectrum of TC.	64
Figure 3.16	¹ H-NMR spectrum of TC.	65
Figure 3.17	The electronic absorption spectrum of 1.	68
Figure 3.18	The electronic absorption spectrum of 2.	68
Figure 3.19	The electronic absorption spectrum of 3.	69
Figure 3.20	IR spectrum of 1.	71
Figure 3.21	IR spectrum of 2.	72
Figure 3.22	IR spectrum of 3.	73

Figure 3.23	¹ H-NMR spectrum of 1.	75
Figure 3.24	¹ H-NMR spectrum of 2.	76
Figure 3.25	¹ H-NMR spectrum of 3.	77
Figure 3.26	Mass Spectra of 3.	79
Figure 3.27	Structural representation of complex 1.	81
Figure 3.28	Structural representation of complex 2.	82
Figure 3.29	Structural representation of complex 3.	82
Figure 3.30	3D geometrical Structural representation of complex 1.	83
Figure 3.31	3D geometrical Structural representation of complex 2.	83
Figure 3.32	3D geometrical Structural representation of complex 3.	84
Figure 3.33	Structure of Testosterone	85
Figure 3.34	The absorption spectra of the ACAC(1), Eu(III)-ACAC(2), and	86
	Eu (III)-ACAC with Testosterone (3).	
Figure 3.35	The fluorescence spectra of (1) Eu ³⁺ ion, (2)Eu ³⁺ -Acetylacetone	87
	and (3) testosterone -Eu ³⁺ -Acetylacetone complex	
Figure 3.36	Fluorescence emission spectra of Eu ³⁺ -Acetylacetone at different	88
	pH at λex =385 nm.	
Figure 3.37	The fluorescence spectra of 1x10 ⁻⁵ M of Eu-ACAC measured in	89
	different solvents.	
Figure 3.38	The fluorescence spectra of the Eu(III)-ACAC at different	90
	concentrations of testosterone in acetonitrile at $\lambda ex = 385 \text{ nm}$	
	and pH 8.4.	
Figure 3.39	linear relationship between concentration of testosterone and	92
	fluorescence intensity of Eu ³⁺ -Acetylacetone complex in	
	acetonitrile	
Figure 3.40	The electronic absorption spectrum of 4.	99
Figure 3.41	The electronic absorption spectrum of 5.	99
Figure 3.42	The electronic absorption spectrum of 6.	100
Figure 3.43	IR spectrum of 4.	103
Figure 3.44	IR spectrum of 5.	104
Figure 3.45	IR spectrum of 6.	105
Figure 3.46	¹ H-NMR spectrum of 4.	107
Figure 3.47	¹ H-NMR spectrum of 5.	108

Figure 3.48	¹ H-NMR spectrum of 6.	109
Figure 3.49	Mass Spectra of 4.	111
Figure 3.50	Structural representation of complex 4.	113
Figure 3.51	Structural representation of complex 5.	114
Figure 3.52	Structural representation of complex 6.	115
Figure 3.53	3D geometrical Structural representation of complex 4.	116
Figure 3.54	3D geometrical Structural representation of complex 5.	117
Figure 3.55	3D geometrical Structural representation of complex 6.	117
Figure 3.56	Chemical structure of Hydrochlorothiazide	118
Figure 3.57	The absorption spectra of the ACAC1, Tb(III)-Acetylacetone2,	120
	and Tb(III)-Acetylacetone with hydrochorothiazide3	
Figure 3.58	The fluorescence spectra of (1) hydrochlorothiazide, (2)Tb(III)-	121
	Acetylacetone and (3) hydrochlorothiazide - Tb(III)-	
	Acetylacetone complex	
Figure 3.59	The fluorescence spectra of the Tb(III)-Acetylacetone in different	122
	solvents, $\lambda_{ex} = 285$ nm.	
Figure 3.60	The fluorescence spectra of the $\ensuremath{\mathrm{Tb}}(\ensuremath{\mathrm{III}})\mbox{-}\ensuremath{\mathrm{Acetylacetone}}$ at different	123
	concentrations of hydrochlorothiazide in DMSO at $\lambda_{ex} = 285 \ nm$	
	and pH 6.3.	
Figure 3.61	Linear relationship between concentration of	125
	hydrochlorothiazide and Normalized luminescence intensity of	
	Tb(III)-Acetylacetone complex in DMSO.	
Figure 3.62	The electronic absorption spectrum of 7.	132
Figure 3.63	The electronic absorption spectrum of 8.	133
Figure 3.64	The electronic absorption spectrum of 9.	133
Figure 3.65	The electronic absorption spectrum of 10.	134
Figure 3.66	IR spectrum of 7.	137
Figure 3.67	IR spectrum of 8.	138
Figure 3.68	IR spectrum of 9.	139
Figure 3.69	IR spectrum of 10.	140
Figure 3.70	¹ H-NMR spectrum of 7.	143
Figure 3.71	¹ H-NMR spectrum of 8.	144
Figure 3.72	¹ H-NMR spectrum of 9.	145