

#### بسم الله الرحمن الرحيم



-Call 6000





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





#### جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

#### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار













بالرسالة صفحات لم ترد بالأصل



# Monostototic & polystotic marrow disorders:MRI characterization versus biopsy

Thesis
Submitted for partial fulfillment of M.D.degree
(Radiodiagnosis)

Submitted by:

Maha Mahmoud Radi
Assistant Lecturer of Radiodiagnosis
Kaser El-Aini
Cairo Univerity

Supervisors:

Prof.Dr.Hazem Mohamed Moguib Moharram
Professor of Radiodiagnosis
Kaser El-Aini
Cairo Univerity

Assistant Prof.Dr.Magdy Mohamed Ezz Al-Arab Assistant Professor of Radiodiagnosis Kaser El-Aini Cairo Univerity

Cairo University- 2010

#### Abstract

Magnetic resonance imaging is an excellent noninvasive modality for evaluating bone marrow and detecting marrow lesions, as it provides information at the level of cellular and chemical composition, in addition to gross morphologic data. Knowledge of normal marrow components and composition and their variation, as well as of factors that alter MR signal intensity, is important for optimal interpretation of MR images. The signal intensity, morphology, and location of marrow findings on MRI can be used to provide more accurate diagnoses, to guide treatment, and to follow therapy-related changes. Various MR imaging techniques are available to accentuate the different chemical and cellular compositions of normal marrow and marrow diseases. Although MRI is more sensitive than specific in detecting marrow changes, integrating all the clinical and radiologic data can result in more useful interpretations. In an attempt to overcome the current limitations of MRI, several newer techniques are under investigation that could increase the ability of MRI to provide even more clinically relevant information about marrow in oncology patients. However, the extreme variability in tumor biology, behavior, and histology may make confident differentiation by MRI alone so a biopsy or needle aspiration is required.

Key words: (MRI, biopsy, marrow infiltration).

## Heknowledgment

First and foremost, I would like to express my deepest gratitude and thanks to Prof. Dr. Hazem Moharram, Professor of Radiodiagnosis, faculty of medicine, Cairo University, Thank you for believing in me, your sincere advice, continuous support and encouragement allowed completion of this study.

Words couldn't express the feeling of gratitude and respect I carry to Dr. Jeff Chankowsky and Dr. Tom Powell, Professors of Radiodiagnosis at Mcgill University, Canada. Thank you for making it fun, I would never have finished this without you, especially Dr. Chankowsky who righted the ship when it tried to sink.

Last ,but not least , I am deeply thankful to all my senior staff and colleagues for their help and encouragement , I also would like to thank the technologists and nursing staff for their kind and precious assistance in performing this work.

### Contents

|                                                                                  | Page       |
|----------------------------------------------------------------------------------|------------|
| Review of Literature                                                             | 1          |
| ■ Anatomy, Histopathology & Physiology                                           | 1          |
| ■ MR Imaging of Bone Marrow Disorders                                            | <i>32</i>  |
| ■ New MR Imaging Techniques                                                      | <i>78</i>  |
| <ul> <li>Normal Variants &amp; Pitfalls That Simulates Marrow Lesions</li> </ul> | 85         |
| Percutaneous Bone Marrow Biopsy                                                  | 95         |
| Subjects & Methods                                                               | <i>124</i> |
| Results                                                                          | <i>127</i> |
| Case Presentation                                                                | 143        |
| Discussion                                                                       | 199        |
| Summary                                                                          | 216        |
| References                                                                       | 219        |
| Arabic Summary                                                                   | 232        |

## List Of Figures

|        |                                                                                                  | Page |
|--------|--------------------------------------------------------------------------------------------------|------|
| Fig.1  | Sequence of hematopoietic stem cell cluster emergence within the human embryo.                   | 2    |
| Fig.2  | Chronology of appearance of hematopoietic stem cells in the developing human embryo.             | 2    |
| Fig.3  | Transverse section of body of human fibula, decalcified. X 250.                                  | 6    |
| Fig.4  | Diagram of bone vasculature.                                                                     | 16   |
| Fig.5  | Erythropoiesis stages.                                                                           | 18   |
| Fig.6  | Overview of megakaryocyte production of platelets.                                               | 20   |
| Fig.7  | Hematopoiesis of bone cells and marrow stromal cells.                                            | 21   |
| Fig.8  | Normal conversion of hematopoietic marrow into fatty marrow from birth to 70 years.              | 34   |
| Fig.9  | Normal distribution pattern of adult marrow.                                                     | 35   |
| Fig.10 | Epiphyseal marrow in 20-year-old man.                                                            | 35   |
| Fig.11 | Normal vertebral marrow.                                                                         | 35   |
| Fig.12 | Marrow reconversion in 21-year-old woman with sickle cell anemia and knee pain.                  | 39   |
| Fig.13 | A 57-year-old male patient with IgG myeloma and normal-appearing bone marrow of the spine.       | 41   |
| Fig.14 | A 75-year-old patient with IgG myeloma with multifocal infiltration of the bone marrow of spine. | 41   |

| Fig.15 | A 49-year-old male patient with IgA myeloma with diffuse infiltration of the bone marrow of the | 42 |
|--------|-------------------------------------------------------------------------------------------------|----|
| Fig.16 | spine. A 55-year-old female patient with IgG variegated myeloma.                                | 43 |
| Fig.17 | An 8-year-old patient with leukemia.                                                            | 46 |
| Fig.18 | Metastasis; variable cases.                                                                     | 47 |
| Fig.19 | A 35-year-old man with a history of low-grade                                                   | 49 |
| Fig.20 | lymphoma.  Marrow depletion from radiation therapy.                                             | 50 |
| Fig.21 | A 77-year-old female with myelodysplastic                                                       | 51 |
| Fig.22 | syndrome.  Diseases of the reticulin component.                                                 | 52 |
| Fig.23 | Gaucher's disease.                                                                              | 54 |
| Fig.24 | A 58-year-old woman with sarcoidosis and pelvic                                                 | 55 |
| Fig.25 | pain. A 35-year-old man with a history of Ankylosing                                            | 56 |
| Fig.26 | spodylitis. Staphylococcal osteomyelitis in 12-year-old boy.                                    | 56 |
| Fig.27 | Pyogenic spondylodiscitis.                                                                      | 58 |
| Fig.28 | Tuberculous spondylitis.                                                                        | 59 |
| Fig.29 | Osteonecrosis in a 43-year-old woman with ankle                                                 | 60 |
| Fig.30 | pain. Paget disease of bone in a 50-year-old woman.                                             | 62 |
| Fig.31 | Fibrous displasia.                                                                              | 63 |
| Fig.32 | Fatigue fracture in a 25-year-old woman runner                                                  | 65 |
| Fig.33 | with low back pain. Osteoporotic compression fracture.                                          | 67 |
|        |                                                                                                 |    |

| Fig.34 | Vertebral metastasis with pathologic fracture in 57-year-old man.                                    | 68 |
|--------|------------------------------------------------------------------------------------------------------|----|
| Fig.35 | Infectious vertebral body collapse.                                                                  | 68 |
| Fig.36 | MR images after radiation therapy of a focal PNET tumor infiltration in L 2.                         | 70 |
| Fig.37 | MR images of the pelvis before and after chemotherapy for a fibrosarcoma of the pelvis.              | 71 |
| Fig.38 | MR images of a patient with malignant lymphoma and multifocal bone marrow infiltration.              | 73 |
| Fig.39 | A patient with myeloma at different stages of therapy.                                               | 74 |
| Fig.40 | Postmicrodiskectomy infectious spondylitis.                                                          | 75 |
| Fig.41 | Post-PV with adjacent level compression fracture.                                                    | 77 |
| Fig.42 | Metastatic colon carcinoma.                                                                          | 79 |
| Fig.43 | Benign compression fracture.                                                                         | 81 |
| Fig.44 | Dynamic contrast-enhanced MRI perfusion imaging.                                                     | 82 |
| Fig.45 | A 42-year-old patient after recurrent chemotherapy and GCSF treatment.                               | 83 |
| Fig.46 | Whole Body-MRI demonstrated multiple myeloma manifestation.                                          | 84 |
| Fig.47 | Normal marrow. Homogeneous marrow appearance with more fatty marrow around the vertebral veins.      | 86 |
| Fig.48 | Normal marrow. Moderate decrease in signal intensity in the anterior aspect of the vertebral bodies. | 86 |
| Fig.49 | Heterogeneous marrow.                                                                                | 87 |
| Fig.50 | Vertebral hemangioma.                                                                                | 89 |
| Fig.51 | Typical vertebral hemangioma.                                                                        | 90 |
| Fig.52 | Atypical vertebral hemangioma.                                                                       | 90 |

| Fig.53 | Typical vertebral enostosis.                                  | 91  |
|--------|---------------------------------------------------------------|-----|
| Fig.54 | Atypical enostosis.                                           | 92  |
| Fig.55 | Nodule of red marrow.                                         | 92  |
| Fig.56 | An area of red marrow.                                        | 94  |
| Fig.57 | Coaxial Access Set.                                           | 96  |
| Fig.58 | Osteo-Site Needle Side Bevel – M1.                            | 96  |
| Fig.59 | Osteo-Site Needle Diamond Bevel – M2.                         | 96  |
| Fig.60 | Jamshidi bone marrow biopsy needles.                          | 97  |
| Fig.61 | Geremia Biopsy Needle Set.                                    | 97  |
| Fig.62 | Elson Bone Biopsy Needle Set.                                 | 97  |
| Fig.63 | Cook guided bone biopsy set.                                  | 98  |
| Fig.64 | KyphX One-Step™ Osteo Introducer System.                      | 98  |
| Fig.65 | Bonopty Bone Biopsy System.                                   | 98  |
| Fig.66 | Ostycut biopsy needle set.                                    | 99  |
| Fig.67 | Quick-Core Biopsy Needle Sets.                                | 99  |
| Fig.68 | Commercially available bone marrow procedure kit.             | 99  |
| Fig.69 | Posterolateral approach for lumbar spine percutaneous biopsy. | 104 |
| Fig.70 | Approach to the lumbar spine.                                 | 104 |
| Fig.71 | Approach for lumbar disc biopsy.                              | 104 |

| Fig.72 | Spinal infection. The appropriate level of puncture and caudal inclination of the approach to orientate the biopsy needle parallel to the disk space. | 105 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fig.73 | Metastatic nodule of L5 biopsy using oblique descending approach.                                                                                     | 105 |
| Fig.74 | Biopsy of L1 using an ascending route.                                                                                                                | 105 |
| Fig.75 | The four steps of the transpedicular approach at the lumbar level.                                                                                    | 106 |
| Fig.76 | Transpedicular approach of a metastatic lesion of L2.                                                                                                 | 106 |
| Fig.77 | Posterolateral approach to the thoracic spine drawn on a computed tomography picture.                                                                 | 108 |
| Fig.78 | Changes in angle of approach that must be made for various vertebral levels.                                                                          | 108 |
| Fig.79 | Patient in 35° oblique procubitus position.                                                                                                           | 108 |
| Fig.80 | Diagram of anatomical relations in 35° oblique procubitus position.                                                                                   | 109 |
| Fig.81 | Disc biopsy of a spinal tuberculosis at T6–T7.                                                                                                        | 110 |
| Fig.82 | Transpedicular approach at the thoracic level.                                                                                                        | 110 |
| Fig.83 | Biopsy of a thoracic lesion in prone position                                                                                                         | 111 |
| Fig.84 | through an "imaginary" pedicle.  Approach to the cervical spine.                                                                                      | 111 |
| Fig.85 | Percutaneous cervical spine biopsy through an anterolateral route.                                                                                    | 111 |
| Fig.86 | Brodie tibial abscess biopsy under CT-scan guidance.                                                                                                  | 112 |
| Fig.87 | Examples of the tangential approach for biopsy of<br>the ribs and sternum, vertebral neural arch, and<br>cranial vault.                               | 113 |
| Fig.88 | Biopsy of a lytic metastatic lesion of an anterior rib.                                                                                               | 113 |
| Fig.89 | Percutaneous biopsy under computed tomography scan control.                                                                                           | 113 |

| Fig.90 | Percentage of cases according to pathology results.                        | 127 |
|--------|----------------------------------------------------------------------------|-----|
| Fig.91 | Percentage of different malignant cases.                                   | 128 |
| Fig.92 | Percentage of different non-malignant cases.                               | 128 |
| Fig.93 | Graph of correlation of positive bone scan with lesion location and size.  | 134 |
| Fig.94 | Graph of direct relationship between cortical involvement and lesion size. | 135 |
| Fig.95 | MRI pattern of marrow infiltration in myeloma patients.                    | 137 |
| Fig.96 | Cortical bone involvement in Lymphoma.                                     | 139 |
|        |                                                                            |     |