

New Strategies of Blood Transfusion in Anemic Critically Ill Patients

An Essay
Submitted for partial fulfillment of Master degree
in Intensive Care

Ву

Islam Abdu-Allah Mahmoud Elwan

M.B., B.CH. Al-Azhar University

Under supervision of

Prof. Dr. Hala Amin Hassan

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine—Ain Shams University

Prof. Dr. Adel Michael Fahmy

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine—Ain Shams University

Dr. Mostafa Mohammed Serry

Lecturer in Anesthesia, Intensive Care and Pain Management Faculty of Medicine—Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

Acknowledgement

First of all my deepest thank to **Allah** for enabling me to do right things and giving me the strength to accomplish this work.

I am greatly honored to express my deep respect and gratitude to **Prof. Dr. Hala Amin Hassan**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine -Ain Shams University. I had the honor to work under her supervision and many thanks to her for her faithful supervision and guidance.

I am very much grateful to **Prof. Dr. Adel Michael Fahmy,** Professor of Anesthesia, Intensive Care and Pain Management, Faculty of medicine-Ain Shams University, for his faithful supervision, help and encouragement in initiating and completing this work and for his valuable advice that helped me to finish this work.

I am very much obliged to **Dr. Mostafa Mohammed Serry**, Lecturer in Anesthesia, Intensive Care and Pain Management, Faculty of Medicine- Ain Shams University, for his continues help, valuable suggestions, final revision of the manuscript and for offering me much of his time and effort throughout this study.

Islam Abdullah Mahmoud Elwan

List of Contents

Subject	Page	No.
List of Abbro	eviations	i
List of Table	S	iv
List of Figur	es	V
Introduction		1
Anemia in C	ritical Illness	3
Red Blood C	ells as a Transfusion Product	20
Indications a	and Risks of Red Blood Cell Transfusion	38
New Strategi	ies of Red Blood Cell Transfusion	53
Summary	••••••	64
References	••••••	68
Arabic Sumr	nary	••••

List of Abbreviations

Abbre.	Full term
ACS	: Acute coronary syndrome.
AHTR	: Acute hemolytic transfusion reaction.
ANZSBT	: Australian New Zealand Society of Blood Transfusion
ARDS	: Acute respiratory distress syndrome.
BP	: Blood pressure.
CABG	: Coronary artery bypasses grafting.
CaO ₂	: Arterial oxygen content.
CBF	: Cerebral blood flow.
CHF	: Congestive heart failure.
CMV	: Cytomegalovirus.
COPD	: Chronic obstructive pulmonary disease.
CPD	: Citrate phosphate dextrose.
DMT	: Divalent metal transporter.
DO_2	: Oxygen delivery.
EPO	: Erythropoietin.
ESAs	: Erythropoiesis stimulating agents.
Fab	: Antibody fragment.
Fe	: Iron.
FFP	: Fresh frozen plasma.
FNHTR	: Febrile nonhemolytic transfusion reaction.
GI	: Gastrointestinal.
GvHD	: Graft versus host disease.
Gy	: The gray unit of ionizing radiation dose in the International System of Units (SI).
Hb	: Hemoglobin.

HBOCs : Recombinant-based hemoglobin based oxygen carriers.

HIV : Human immune-deficiency virus.

HLA: Human leucocyte antigen.

HTLV: Human T-lymphotropic virus.

ICP: Intracranial pressure.

IF : Interferon.

IHD: Ischemic heart disease.

IL: Interleukin.

IRP: Iron regulatory protein.

LOS : Length of stay.

LPS: Lipopolysaccharides.

NO : Nitric oxide.

NSTEMI: Non ST segment elevation myocardial infarction.

NTBI : Non transferrin bound iron.O₂ER : Oxygen extraction ratio.

PaO₂: Partial pressure of oxygen in arterial blood

PRBCs: Packed red blood cells.

RBCs: Red blood cells.

rfvIIa : Recombinant activated factor VII.

RR : Respiratory rate.

SAGM : Saline (NaCl 0.9%) and adenine glucose mannitol.

SAH : Subarachnoid hemorrhage.SaO₂ : Arterial oxygen saturation.

ScVO₂ : Central venous oxygen saturation.

SpHb : Hemoglobin monitoring by Spectrophotometry.STEMI : ST segment elevation myocardial infarction.

TA-GVHD: Transfusion-associated graft versus host disease.

TACO: Transfusion-associated circulatory overload.

TBI : Traumatic brain injury.TfR : Transferrin receptors.TNF : Tumor necrosis factor.

TRALI : Transfusion related acute lung injury.

TRIM: Transfusion related immunomodulation.

UK : United Kingdom.

USA : United States of America.

VAMP: Venous arterial blood management protection.

VAP : Ventilator associated pneumonia.

VO₂ : Oxygen uptake.

vWF : Von Willebrand factor .

WHO: World Health Organization.

List of Tables

Table No.	Title Page No.
Table (1):	Estimates of the prevalence of anemia at admission to intensive care
Table (2):	Hemoglobin transfusion triggers and transfusion rates in intensive care for recent large epidemiological studies of anemia, blood transfusion or both in ICUs
Table (3):	Anemia in intensive care patients8
Table (4):	Effects of storage of packed red blood cells 23
Table (5):	Special Processing of RBC for Transfusion 24
Table (6):	Pretransfusion Testing
Table (7):	Indications of transfusion of specially processed RBCs
Table (8):	Infectious complications of blood transfusions
Table (9):	Noninfectious serious hazards of transfusion 46
Table (10):	TRALI vs. TACO – Clinical features and investigations
Table (11):	Anemia and blood transfusion in the intensive care unit
Table (12):	Mortality and complications in studies of blood transfusions in critically ill patients 52

List of Figures

Figure No.	Title	Page No.
Figure (1):	Pathogenesis of anemia of critical illnes	ss14
Figure (2):	Production of blood components derivatives	
Figure (3):	Example of blood request form	33
Figure (4):	A suggested approach to transfusion critical care	
Figure (5):	Mean units of red blood cells transfus the standard-care group and the managed with SpHb	group
Figure (6):	Percentage of patients receiving 3 or units of blood when managed with stacare or SpHb in 106 patients during blood-loss surgery	ndard high-
Figure (7):	Time delay between time of indication transfusion and time of transfusion start managed with standard care or SpHb	when

Introduction

Anemia is a common finding in critically ill patients, approximately 95% of patients who have been in the intensive care unit (ICU) for 3 days or longer are anemic, with almost 50% of these patients receive a mean of 5 units of RBCs while in the ICU. Anemia results in a reduction in the oxygen-carrying capacity of the blood, which can increase morbidity, mortality, organ failure, and length of stay in the hospital. Although treating anemic patients with RBC transfusions appears logical, some research studies suggest that transfusions may not increase oxygen-carrying capacity and may actually be more harmful to patients than anemia itself (*Collins*, 2011).

Most RBC products are derived by collection of 450-500 (±10%) ml of whole blood from volunteer donors and removal of the plasma by centrifugation. Red cells must only be stored in temperature-controlled, dedicated blood refrigerators and not in ward or domestic refrigerators. The most commonly available RBC product has a 42-day blood bank shelf life and hematocrit (HCT) 55-65%. One unit of RBC will raise the hemoglobin of an average-size adult by ~1g/dl or raise HCT by ~3 % (Weinstein, 2012).

RBC transfusion is not routinely indicated for pharmacologically treatable anemia such as iron deficiency

anemia and vitamin B_{12} or folate deficiency anemia. RBCs are indicated for treatment of symptomatic anemia, for prophylaxis in life-threatening anemia, for restoration of oxygen-carrying capacity in case of hemorrhage. They are also indicated for exchange transfusion in sickle cell disease, severe parasitic infection (malaria, babesiosis), severe methemoglobinemia, and in severe hyperbilirubinemia of the newborn (*Weinstein*, 2012).

The strategies to prevent unnecessary blood transfusion are recommended. Multiple studies support the use of restrictive transfusion strategies, avoidance of pooled blood products, minimizing blood loss due to phlebotomy, and the close monitoring of postoperative bleeding (*McEvoy and Shander*, 2013).

Anemia in Critical Illness

Definition of anemia

Anemia is a hemoglobin concentration in blood that is below the expected value, when age, gender, pregnancy and certain environmental factors; such as altitude, are taken into account. According to The World Health Organization (WHO), anemia is a hemoglobin <13 g/dl (hematocrit <39%) for adult males and <12 g/dl (hematocrit <36%) for adult nonpregnant females (McEvoy and Shander, 2013). It results in a reduction in red cell mass and a decrease in the oxygen-carrying capacity of the blood. The oxygen carrying capacity of blood is probably best determined by the mass of circulating red blood cells (RBCs). Since red cell mass is not easily measured in the clinical setting, the practical definition of anemia is based on the hemoglobin (Hb) concentration of whole blood. Under most circumstances the Hb concentration is a good indicator of the red cell mass, but changes in the plasma volume may lead to discrepancies (Walsh and Saleh, 2006). For example, an increase in the plasma volume will decrease the Hb concentration, which may be interpreted as worsening anemia, even though the red cell mass remains unchanged as occurring in pregnancy. During pregnancy, the red cell mass increases by almost 50% but the Hb concentration usually falls because the plasma volume increases by more than 50%, and in surgical and critically ill patients, fluctuations in the plasma volume often

occur due to intravenous fluid resuscitation and increased capillary leak [(McLellan et al.,2003); (Walsh and Saleh, 2006)].

The prevalence of anemia of critical illness

The prevalence of anemia among critically ill patients is influenced by factors that include patient case mix, illness severity and pre-existing comorbidity.

Anemia at ICU admission

In an observational, multicenter, cohort study in Scotland, 25% of patients admitted to the ICU had a hemoglobin level < 9 g/dl. A cohort study of 3534 patients admitted to 146 Western European ICUs with varying case mix (**Table 1**) found that the mean hemoglobin concentration at ICU admission was 11.3 g/dl. Sixty-three per cent of patients had a hemoglobin concentration <12 g/dl on ICU admission and 29% of patients had an admission hemoglobin concentration <10 g/dl. The study found that 50% of those patients admitted to ICUs with a hemoglobin concentration <10 g/dl had no history of either acute bleeding or other documented causes of anemia. Approximately, 40% of the patients in the study were elective postoperative admissions to ICUs and the overall illness severity was therefore lower than is typical for some countries (mean APACHE II score 14.8; SD 7.9) (*Walsh and Saleh, 2006*).

A similarly designed study in the USA examined 4892 admissions to ICUs. In this study, the mean hemoglobin concentration at ICU admission was 11.0 g/dl. In the study, 20% of patients were postoperative, although it is unclear whether these were emergency or planned admissions, and the illness severity at ICU admission was higher than in the previous study (mean 19.7; SD 8.2). As in the previous study, 13% of patients had anemia as comorbidity on admission (*Walsh and Saleh*, 2006).

Table (1): Estimates of the prevalence of anemia at admission to intensive care

Variable	Prevalence
Patients with Hb <12 g/dl	60-70%
Patients with Hb <9 g/dl	20-30%
Patients with pre-existing anemia at ICU admission	13%

(Walsh and Saleh, 2006).

Anemia during stay in ICU

The prevalence and severity of anemia during ICU admission is closely linked with the transfusion practice used. The evolution of anemia among non-transfused, non-bleeding, critically ill patients is difficult to study both ethically and in practice (*Walsh and Saleh*, 2006).

Nguyen et al., (2003) found that among non-bleeding ICU patients who did not receive red cell transfusions, hemoglobin

concentrations decreased by a mean of 0.52 g/dl per day. On average, hemoglobin concentrations decreased by 0.66 g/dl /day for the first 3 days and by 0.12 g/dl per day thereafter.

This early rapid decrease in hemoglobin values was also found in a prospective observational single center cohort study of patients receiving more than 24 hours of intensive care. The mean hemoglobin concentration in a cohort of non-transfused patients decreased from 12 g/dl at admission to 11 g/dl by days 3–4, after which values reached a plateau among patients remaining in the study. The normal mean baseline hemoglobin concentration of this cohort suggested that these observations might not be generalized to all intensive care admissions, but confirmed the early rapid onset of anemia in many critically ill patients (*Walsh and Saleh*, 2006).

Another way of assessing the prevalence of anemia in ICU is to examine transfusion rates in conjunction with a measure of illness severity and the hemoglobin transfusion triggers used (**Table 2**) (Walsh and Saleh, 2006).