GHRELIN LEVEL IN CONSTITUTIONAL DELAYED PUBERTY

Thesis Submitted by

Nada Galal El Din Abdul Wahab Salama

M.B.B.Ch Alexandria University

In partial fulfillment of Master Degree in Internal Medicine Supervised by

Prof. Dr. Mohammed Fahmy Abdul Aziz

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr. Yara Muhammed Eid

Assistant Professor of Internal Medicine & Endocrinology
Faculty of Medicine, Ain Shams University

Dr. Laila Mahmoud Ali Hendawy

Lecturer of internal medicine and endocrinology Faculty of Medicine, Ain Shams University

> Faculty of Medicine, Ain Shams University, 2016

Acknowledgements

First and foremost, Allah, the most kind and most merciful, is the one who allowed me to pursue this degree and also allowed me to enrich my knowledge. I am deeply indebted to Allah.

I would like to first of all express my sincere gratitude to my **Professor Dr. Mohammed Fahmy Abdul Aziz,** Professor of Endocrinology, Ain Shams University for being an outstanding advisor and excellent Professor as well as for his continuous support throughout my MSc study.

My thanks go to **Dr. Yara Mohammed Eid**, Assistant Professor of Endocrinology, Ain Shams Uiversity and **Dr. Laila Mahmoud Ali Hendawy**, Lecturer of Endocrinology, Ain Shams University, for their time, patience and effort in reviewing this work and for their generous and valuable knowledge and insight. Their guidance helped me in all time of research and writing of this thesis as well as helped me widen my research from various perspectives. I could not have imagined having better advisors and mentors for my MSc study.

I would also like to express my deep gratitude to **Dr. Eman Mohammed Fahmy**, Lecturer of Endocrinology, Helwan University for her resourceful advice and cooperation as well as encouragement.

My sincere thanks extend to **Dr. Ayat Farouk Mohammed**,
Lecturer in the Department of Community, Environmental and
Occupational Medicine, Ain Shams University for her patience, relentless
editing, support and encouragement. Without her support, her expertise
and her dedication to assist me, this thesis would not have been possible.

I would like to thank **Dr. Magdy Abbas Abdul Aziz,** Consultant of Biochemistry, Ain Shams University for giving me the opportunity to

access the laboratory as well as for his moral support and assistance and cooperation in the practical work.

I would also like to thank everyone who contributed in one way or another in making this thesis come to reality.

Last but not least, my special thanks go to my parents and friends for providing me with continuous moral support and unending care through the good times and the bad times.

Table of Contents

Acknowledgements3
List of Abbreviations7
List of Tables9
List of Figures10
Introduction13
Aim of the work14
Review of Literature:15
Chapter 1 – Puberty16
 Normal puberty
Chapter 2 – Ghrelin hormone42
 Structure
Chapter 3 – Ghrelin/Puberty relationship70

Subjects and Methods7	'7
Results8	7
Discussion10)3
Summary and Conclusion	111
Recommendations1	13
References1	14
Arabic summary15	51

List of Abbreviations

- **GnRH** Gonadotrophin Releasing Hormone
- **SD** Standard Deviation
- **CDGP** Constitutional Delayed Growth and Puberty
- **CDGM** Constitutional Delayed Growth and Maturation
- **LH** Leutinizing Hormone
- **FSH** Follicle Stimulating Hormone
- **HCG** Human Chorionographic Hormone
- **IGF-1** Insulin Growth Factor
- **IDDM** Insulin Dependant Diabetes Mellitus
- **CRH** Corticotrophic Hormone
- SBP Systolic Blood Pressure
- **DBP** Diastolic Blood Pressure
- C-AMP Cyclic Adenosine Monophosphate
- **TSH** Thyroid Stimulating Hormone
- **GHSR** Growth Hormone Secretagogue Receptor
- **ISS** Idiopathic Short Stature
- **NPY** Neuropeptide Y
- ACTH Adrenocorticotrophic Hormone
- **ERK** External Activated Receptor Kinase
- MAPK Mitogen Activated Protein Kinase
- **PKC** Protein Kinase C
- IGHD Isolated Growth Hormone Deficiency
- **IP3** Inositol triphosphate
- **T4** Thyroxin
- Ca Calcium
- **GH** Growth Hormone
- mRNA Messenger Ribonucleic Acid
- LHRH Leutinizing Hormone Releasing Hormone
- **HPG** Hypothalamo-Pituitary-Gonadal axis
- **BMI** Body Mass Index
- **Hb** Hemoglobin
- **Plt** Platelet count
- TLC Total Leucocytic count
- **ESR** Erythrocyte Sedimentation Rate
- TNF Tumour Necrosis Factor

- IL Interleukin
- **FBG** Fasting Blood Glucose
- N Number
- **NS** Non-significant
- **Sig** Significant
- **HS** Highly significant
- X² Pearson Chi Square
- **R** Pearson Correlation Coefficient
- **HCL** Hydrochloride
- **AChE** Acetyl Choline Esterase
- **EIA** Enzyme Immunometric Assay
- **CBC** Complete Blood Count
- MPH Mid-parental Height
- **EDS** Ethylene Dimethane Sulfonate
- RT-PCR Reverse Transcriptase Polymerase Chain Reaction
- SCF Stem Cell Factor
- ELISA
- EDTA
- **HUVEC** Human Umbilical Vein Endolthelial Cells
- NO Nitric Oxide
- **PI3** Phosphoinositide 3 Kinase
- **HEX** Hexaghrelin
- **VDCC** Voltage Dependant Calcium Channels
- **ATP** Adenosine Triphosphate
- **ADP** Adenosine Diphosphate
- **KATP** ATP sensitive potassium channel
- **GOAT** Ghrelin O Acyltransferase
- **DHEA** Dihydroepiandrosterone
- **DHEAS** Dihydroepiandrosterone Sulphate
- **SHBG** Sex Hormone Binding Globulin
- **POMC** Propiomelanocortin
- GABA Gamma Amino Butyric Acid
- **KAL** Kallman
- **CAH** Congenital Adrenal Hyperplasia
- **AgRP** Agouti Related Peptide
- **BMD** Bone Mineral Density
- **PSA** Prostate Specific Antigen

List of Tables

- **Table 1:** Comparison between CDGP and Hypogonadism
- **↓ Table 2:** Comparison between group 1 and 2 regarding demographic and laboratory variables using the T-test
- **★ Table 3:** Comparison between group 1 and 2 regarding the different variants using Chi-Square
- **Table 4:** Correlation between ghrelin and the different variables using pearson correlation

List of figures

- Fig.1 and Fig.2 Tanner J.M. (1962) "Tanner Staging."
- **Fig.3** What is the hypothalamo-pituitary axis? Endocrinesurgeon.co.uk . (2014)
- **Fig.4** McCartney C.R. **(2010)** "Maturation of sleep-wake gonadotrophin-releasing hormone secretion across puberty in girls: potential mechanisms and relevance to the pathogenesis of polycystic ovary syndrome." *Journal of Neuroendocrinology* 22(7):701-9.
- **Fig.5** –Roth M.Y., Amory J. K. and Page S.T. (2008)
 "Treatment of male infertility secondary to morbid obesity"

 Nature Clinical Practice Endocrinology & Metabolism 4; 415-419
- **Fig.6** Tanner JM (**1985**) "Clinical longitudinal standards for height and height velocity for North American children." *Journal of Pediatrics*
- **Fig.7** Mequiniun M. and Langlet F. (2013)"Ghrelin: central and peripheral implications in anorexia nervosa." *Frontiers*.
- **Fig. 8** Kojima et al, (2005) "Effect of ghrelin on neuropeptide and neurotransmitter release." *American Physiological Society Journals*
- **Fig.9** Kojima et al (2005) "Effect of Ghrelin on Appetite." *American Physiological Society Journals*
- Fig.10 Yago, M.D., Manas M., and Singh J. (2000)"Intracellular Magnesium: Transport and Regulation in Epithelial Secretory Cells." *Frontiers in Bioscience* 602-18.
- **Fig.11** Alvarellos, S.S. and Cordido F. (**2010**) "Effect of Ghrelin on Glucose-Insulin Homeostasis: Therapeutic Implications." *International Journal of Peptides* 25 Pages.
- **Fig.12** Meyer, C. (2010) "Final Answer: Ghrelin Can Suppress Insulin Secretion in Humans, but Is It Clinically Relevant?" *American Diabetes Association* 59.11: 2726-728.
- **Fig. 13** Kashanian, M. and Razavi F. (2009) "Ghrelin and Leptin Levels in Relation to Puberty and Reproductive Function in Patients with Beta-thalassemia." *Hormones* 8.3: 207-13.
- **Fig. 14** Dupont, J. and Maillard V. et al. **(2010)** "Ghrelin in Female and Male Reproduction." *International Journal of Peptides* 8.

- **Fig. 15** Kashanian M., Razavi F., (2009) "Ghrelin and leptin levels in relation to puberty and reproductive function in patients with beta-thalassemia." *Hormones (Athens)* 8: 207–213
- **Fig. 16** Repaci A., Gambineri A. et al, (**2011**) "Schematic representation of the effect of ghrelin on CRH and subsequently LH and FSH." *Molecular and Cellular Endocrinology* 1: 340
- **Fig. 17** Rogol A.D., (**2014**) " Diagnostic approach to children and adolescents with short stature" *Uptodate*
- **Fig. 18** Weight for age percentiles for Egyptian boys aged from 2-21 years.
- **Fig. 19** Stature for age percentiles for Egyptian boys aged 2-21 years.
- **Fig. 20** BMI for age percentiles for Egyptian boys aged 2-21 years.
- **Fig. 21** Bayley N., Pinneau S.R., **(1952)** "Tables for predicting adult height from skeletal age: revised for use with the Greulich-Pyle hand standards." *Journal of Pediatrics* 40; 423.
- **Fig. 22** Bar chart showing a significant statistical difference between cases and controls regarding height.
- **Fig. 23** Bar graph showing significant statistical difference between cases and controls regarding body weight.
- **Fig. 24** Bar graph showing significant statistical difference between cases and controls regarding BMI.
- **Fig. 25** Bar graph showing significant statistical difference between cases and controls regarding arm span.
- **Fig. 26** Bar graph showing non-significant statistical difference between cases and controls regarding Hemoglobin.
- **Fig. 27** Bar graph showing significant statistical difference between cases and controls regarding arm span.
- **Fig. 28** Bar graph showing significant statistical difference between cases and controls regarding basal growth hormone
- **Fig. 29** Bar graph showing significant statistical difference between cases and controls regarding Growth hormone after stimulation.
- **Fig. 30** Bar graph showing non-significant difference between cases and controls regarding serum prolactin.
- **Fig. 31** Bar graph showing significant statistical difference between cases and controls regarding serum LH.
- **Fig. 32** Bar graph showing significant statistical difference between cases and controls regarding FSH.
- **Fig. 33** Bar graph showing significant statistical difference between cases and controls regarding serum total testosterone.

- **Fig. 34** Bar graph showing significant statistical difference between cases and controls regarding serum acylated ghrelin.
- **Fig. 35** Scatter graph showing highly significant negative correlation between serum acylated ghrelin and FSH.
- **Fig. 36** Scatter graph showing negative correlation between serum acylated ghrelin and LH.
- **Fig. 37** Scatter graph showing negative correlation between serum acylated ghrelin and serum total testosterone.
- **Fig. 38** Scatter graph showing a negative correlation between serum acylated ghrelin and basal growth hormone.
- **Fig. 39** Scatter graph showing negative correlation between serum acylated ghrelin and growth hormone after stimulation.

Introduction

Puberty is the result of increasing gonadotropin releasing hormone (GnRH) release by the hypothalamus followed by a complex sequence of endocrine changes with functioning of negative and positive feedbacks and associated with the development of sex characteristics, a growth spurt and reproductive competence (Van de Waal,2004)

There is wide variation in the onset of puberty. According to the national center for health statistics, the upper 95th percentile in the United States for age for boys 14 years (i.e an increase in testicular size being first sign) and for girls is 12 years (breast development being the first sign). (**Bhasin**, 2007)

It is considered to be delayed if the initial signs of sexual maturation do not appear by an age that is 2.5 SD beyond the mean for healthy boys or girls (**Bhasin**, **2007**)

Delayed Puberty result from inadequate gonadal steroid secretion which, in turn, is most often caused by a defective secretion of GnRH from the hypothalamus resulting in low gonadotropin secretion, the key functional defect in patients with constitutional delay. (**Francois and William, 2007**)

Delayed puberty can, however, also be caused by variety of hypothalamic, pituitary and gonadal disorders (**Francois and William**, **2007**)

Impaired secretion of hypothalamic gonadotropin –releasing hormone is generally the underlying cause of secondary hypogonadism. It can be functional in origin (as constitutional delay of puberty, chronic illness, excessive exercise, and malnutrition) or related to associated pathology (as with hypothalamic and pituitary tumors, especially craniopharyngioma) or genetic (idiopathic hypogonadotropic hypogonadism kallmann syndrome) (**Raivio et al, 2007**)

Recently published studies indicate that ghrelin and leptin play a role in puberty initiation and progress. They have been implicated in regulation of GnRH secretion, with ghrelin having inhibitory, and leptin having facilitatory effects. It has been hypothesized that elevated ghrelin

and reduced leptin concentrations could be implicated in altering the tempo of puberty in adolescents with CDGP. (El-Eshmawy et al, 2010)

Ghrelin is a 28-amino acid peptide produced in a variety of human tissues; however the major source of circulating ghrelin is the stomach (**Kangawa et al, 1999**)

Expression of ghrelin has been demonstrated in mature Leydig cells of rat and human testis, as well as in steroidogenically active luteal and interstitial hilus cells of the ovary. Gonadal expression of acylated-ghrelin receptors was also shown in Sertoli and Leydig cells of the testis and in follicular, luteal, surface epithelial and interstitial hilus cells of the ovary. (Fernandez-Fernandez et al, 2007)

Ghrelin can inhibit GnRH pulse activity in ovariectomized adult monkey (Vulliemoz et al, 2004)

Ghrelin inhibits LH secretion *in vivo* in the pre-pubertal males as well as gonadectomized male and female rats, whereas FSH remained unaffected (**Fernandez-Fernandez et al, 2004**)

Aim of the Work

To evaluate ghrelin hormone levels among adolescent boys with constitutional delayed puberty and their relation with reproductive hormones including LH, FSH and Testosterone.

