The Effect of Flowable Bulk Fill Vs Multi Increment Composite on Microleakge and Polymerization Shrinkage Strain in Pulpotomized Primary Molars

Thesis

Submitted to the Department of Pediatric Dentistry and Dental
Public Health
Faculty of Dentistry
Ain Shams University

In
Partial fulfillment of the requirements of the Master Degree in
Pediatric Dentistry

By

Dina Salah Eldin Ahmed Zayed

B.D.S, Faculty of Dentistry, Ain Shams University-2009

2017

Supervisors

Dr. Noha Samir Kabil

Professor of Pediatric Dentistry and Dental Public Health
Faculty of Dentistry
Ain Shams University

Dr. Amira Saad Badran

Lecturer of Pediatric Dentistry and Dental Public Health
Faculty of Dentistry
Ain Shams University

Dedication

This work is dedicated to

My father

My backbone who without his, continuous support and encouragement I wouldn't have been standing here today

My mother

My role model, without her prayers and encouragement I would have never made it

My brother

My lifetime best friend

Acknowledgement

No words can express my deepest thanks and sincere gratitude as well as appreciation to *Professor Dr. Noha Samir Kabil*, Professor of Pediatric Dentistry, Dental Public Health and Community Dentistry, Faculty of Dentistry, Ain Shams University. Her valuable advice, devoted effort and unique cooperation, will always be deeply remembered. This work could have never been completed without her extraordinary assistance and sincere guidance.

I would also like to express my special appreciation and thanks to *Dr. Amira Saad Badran*, lecturer of Pediatric Dentistry, Dental Public Health and Community Dentistry, Faculty of Dentistry, Ain Shams University, for her patience, time and all what she taught me throughout the writing process.

Last and not least I would like to thank my dear professors, colleagues and staff members of Pediatric Dentistry, Dental Public Health and Community Department, Faculty of Dentistry, Ain Shams University, for their great support, encouragement and cooperation.

Table of Contents

Dedication	iii
Acknowledgement	iv
List of Tables	vi
List of Figures	vii
List of Abbreviations	x
Introduction	1
Review of literature	3
Aim of the study	32
Materials and Methods	33
Results	60
Discussion	73
Summary	85
Conclusions	89
Clinical Recommendations	90
References	91
Arabic Summary	03

List of Tables

Table 1: Materials used in the study	. 33
Table 2 : Comparison between groups regarding microleakage	. 62
Table 3: Descriptive statistics between groups regarding microleakage	. 65
Table 4: Comparison of polymerization shrinkage results (Mean values± S	SDs)
between both groups	. 71

List of Figures

Figure 1: Materials used in this study	34
Figure 2: ZOE paste used in the study	35
Figure 3: Glass ionomer cement used for luting SSC	35
Figure 4: 37% phosphoric acid etch used in the study	35
Figure 5: Total etch adhesive used in the study	36
Figure 6: Self etch adhesive used in the study	36
Figure 7: Nano-ceramic composite	36
Figure 8: Flowchart representing different groups for microleakage	testing
	38
Figure 9: Cavity preparation for pulpotomy	40
Figure 10: Finished cavity	41
Figure 11: A Tofflemire matrix holder with o.5 mm metal matrix st	rip was
adapted to the tooth	42
Figure 12: ZOE paste filled the entire cavity	42
Figure 13: Tooth reduction for SSC preparation	46
Figure 14: Stainless steel crown cemented to the prepared tooth	47
Figure 15: Acid etch application	47
Figure 16: Total etch adhesive application	46
Figure 17: SDR application	47
Figure 18: Finishing and polishing	47
Figure 19: Self etch adhesive application	47
Figure 20: Nano-ceramic composite application	48
Figure 21: Completed 42 samples	49
Figure 22: Machine used for thermocycling of teeth	50
Figure 23: Tooth sectioning	54
Figure 24: Stereomicroscope	54
Figure 25: The illustration of microleakage grading scale used	55

Figure 26: Representative microscopic image showing dye penetration score
0(x35) from group 1
Figure 27: Representative microscopic image showing dye penetration score 0
(x35) from group 3 sub group 3a57
Figure 28: Representative microscopic image showing dye penetration score 1
(x35) from group 2 sub group 2b
Figure 29: Representative microscopic image showing dye penetration score 2
(x35) from group 2 sub group 2a
Figure 30: Representative microscopic image showing dye penetration score 3
(x35) from group 3 sub group 3b
Figure 31: Representative microscopic image showing dye penetration score 4
(x35) from group 2 sub group 2a
$\textbf{Figure 32:} \ \textbf{Image of custom made split Teflon mold with strain gage in place} \ \dots 55$
Figure 33: Light curing of composite placed in the mold
Figure 34: Setting for testing strain by strain gage
Figure 35: Column chart comparing marginal leakage scores means values
between all groups
Figure 36: Stacked column chart of the frequency of distribution of marginal
leakage scores for all groups as function of dye penetration scores (%) 67
Figure 37: Column chart of distribution frequency of marginal leakage scores for
group 1 as function of dye penetration scores (%)
Figure 38: Column chart of destribution frequency of marginal leakage scores of
subgroup 2a as function of dye penetration scores(%)
Figure39: Column chart of distribution frequency of marginal leakage scores for
subgroup 2b as function of dye penetration scores (%)69
Figure 40: Column chart of destribution frequency of marginal leakage scores of
subgroup 2a as function of dye penetration scores(%)
Figure 41: Column chart of distribution frequency of marginal leakage scores for
subgroup 3b as function of dye penetration scores (%)

Figure 42: A column chart of polymerization shrinkage mean values between
both groups72
Figure 43: Linear chart showing polymerization shrinkage mean values as
function of time for both groups

List of Abbreviations

ADA American Dental Association

ANOVA Analysis of variance

BISGMA Bisphenol glycol methacrylate

BFRBC Bulk fill flowable resin based composite

CEJ Cemento-enamel junction
C-factor Configuration factor
cm2 Centi- meter square
CI Confidence interval

CS Cusp strain

DC Degree of conversion

EBADMA Ethoxylated Bisphenol A Dimethylacrylate

FDA Food and Drug Administration

GIC Glass ionomer cement

G Group g Grams

HEMA Hydroxyethyl methacrylate IRM Intermediate restorative material

LED Light emitting diode

mm Milli-meter
mW Milli-watt
min Minutes
Mpa Mega Pascal

MOD Mesial-occlusal-distal

nm Nano-meter

PGSS Post gel shrinkage strain

sec Seconds

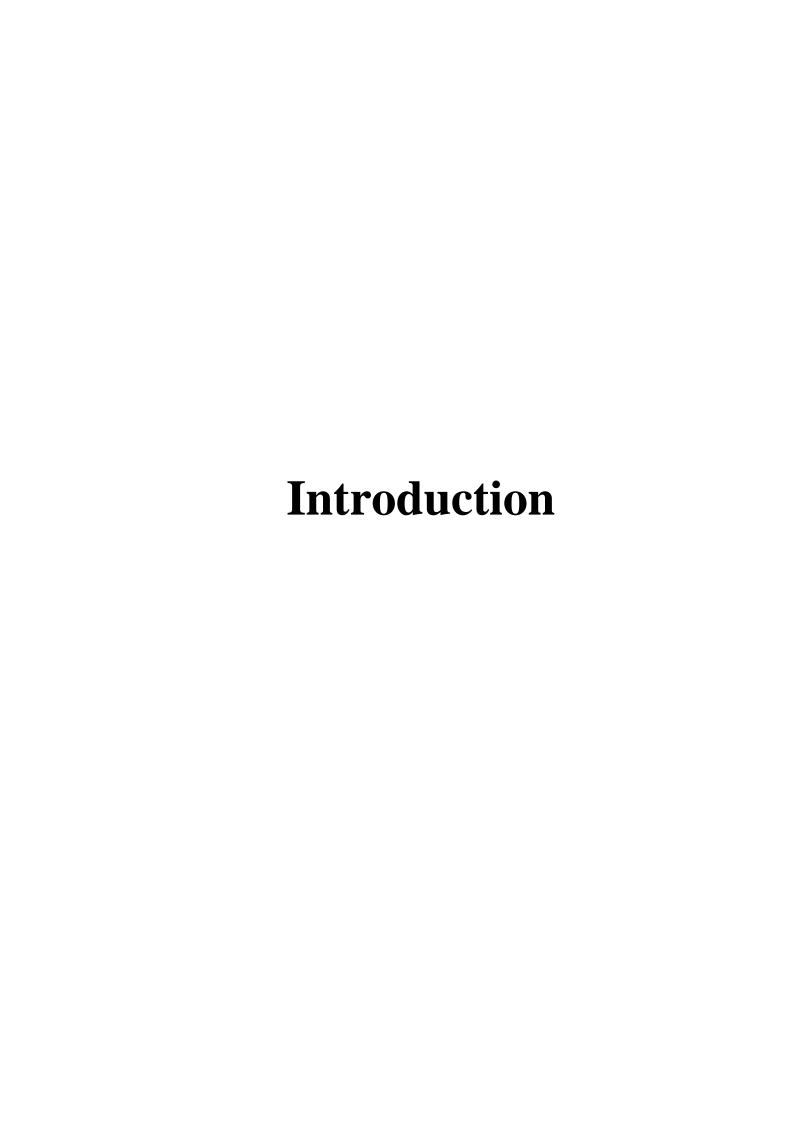
RBC Resin based composite
SEM Scanning electron microscope

SD Standard Deviation
SDR Smart dentin replacement
SSCs Stainless steel crowns

SPSS Statistical Package for Social Science TEGMA Triethylene glycol dimethacrylate

UDMA Urethane dimethacrylate

VSSCs Preveneered stainless steel crowns


WT% Weight percent

ZOE Zinc oxide and eugenol
°C Degree centigrade

µm Micrometre

ustrain Microstrain

MS Mutans Streptococci

Introduction

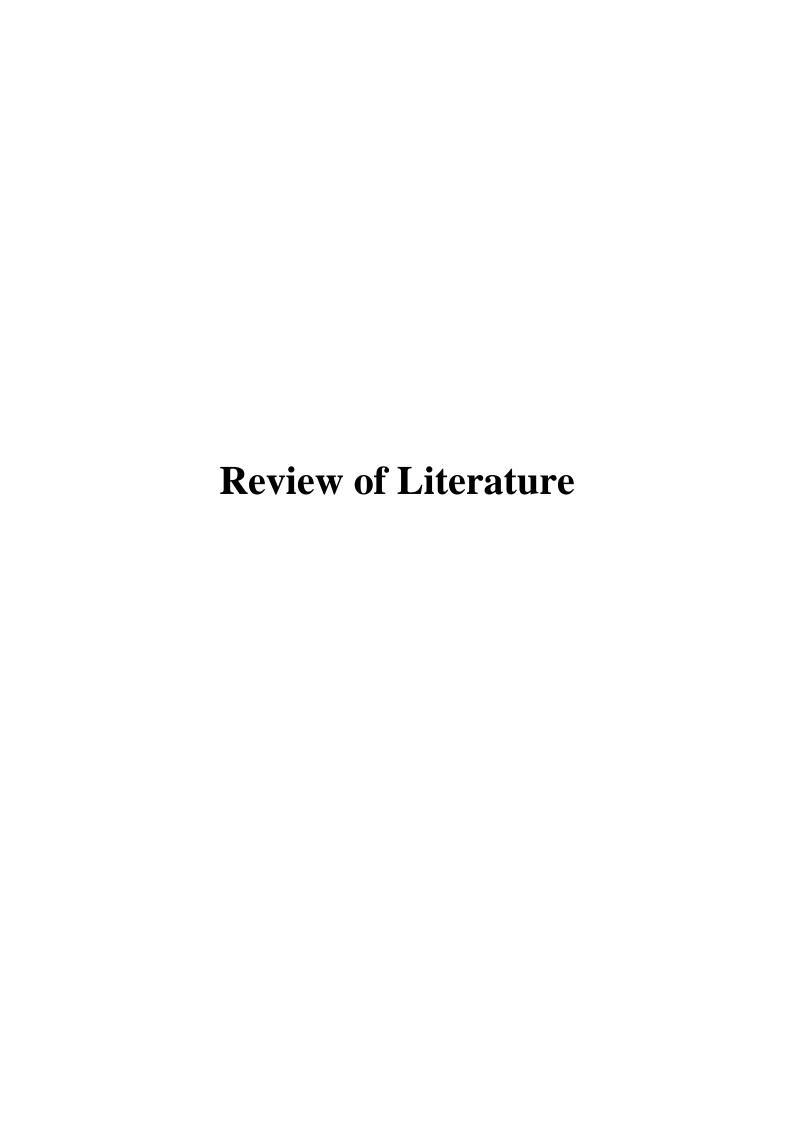
The restoration of pulpotomized primary teeth has always been a challenge between durability and esthetics, the later being the parents' main concern regarding the restorative material used for their children's teeth. Among esthetic materials, glass ionomers have been traditionally used to restore children's teeth, owing to their acceptable esthetic and mechanical properties, the limited number of steps needed for their placement, and their fluoride releasing properties. (1) Unfortunately, they showed many drawbacks concerning their esthetic and mechanical properties as the high solubility of the material and breakage of the material interproximally, which makes it loses its contact with the neighboring teeth over time leading to failure and its consequences. (2)

Composites, which are known for their high mechanical and esthetic properties gained more attention as a restorative material than glass ionomers specially when restoring deep cavities. Despite the advantages of composite resins over glass ionomers, yet their use in pediatric dentistry has always been limited, being a highly technique-sensitive material and a muli-step process that requires longer chair time, does not match the requirements of a restorative material used on children.

Unlike traditional composites, which are typically placed in maximum increments of 2 millimeters (mm), bulk-fill composites are designed to be placed in a 4 mm single increment, or sometimes greater, to save time which is valuable in the practice of pediatric dentistry. However

the 2mm increment technique is used to minimize the polymerization shrinkage and gap formation between the restoration and tooth interface. (3)

Polymerization shrinkage of resin composites remains a clinical concern due to the associated residual stresses that are thought to play a role in marginal failure, microleakage and recurrent caries. Shrinkage stress may also induce tooth deformation and cohesive failures within the material or dental structure, which can lead to postoperative sensitivity. (4)


Adherence of the restorative material to the cavity walls to prevent microleakage is one of the most important characteristics for it to be considered as an ideal material. Microleakage is defined as the chemically undetectable passage of bacteria, fluids, molecules or ions between the cavity walls and restorative materials. This seepage can cause hypersensitivity of restored tooth, tooth discoloration, recurrent caries, pulpal injury and accelerated deterioration of the restorative material.

Microleakage is determined today by many in vivo and in vitro techniques such as; staining, which, is the most common one⁽⁷⁾. Microleakage performance may be useful for comparative assessment of materials and selection of restorative materials with adequate marginal seal that is directly related to the success and longevity of the restorations⁽⁶⁾.

Therefore this study was designed to assess the microleakage of different treatment modialities, used in restoration of pulpotomized primary molars, including: Stainless steel crowns, Multi Increment Restorative composite resin, and Bulk Fill Flowable Restorative

Introduction

composite resin, using two different adhesive techniques, and to compare between the polymerization shrinkage strain of the two types of composite.

