

HARMONIC RESONANCE OVERVOLTAGE DURING MAIN POWER TRANSFORMER ENERGIZATION IN GRID-CONNECTED WIND FARMS

By

Ahmed Fouad Ibrahim Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree Of
MASTER of Science

in

Electrical Power and Machines Engineering

HARMONIC RESONANCE OVERVOLTAGE DURING MAIN POWER TRANSFORMER ENERGIZATION IN GRID-CONNECTED WIND FARMS

By

Ahmed Fouad Ibrahim Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree Of
MASTER of Science

in

Electrical Power and Machines Engineering

Under the supervision of

Prof. Dr. Mahmoud Ibrahim Gilany

Dr. Mostafa Ahmed Elshahed

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Dr. Mahmoud Mohammed Sayed

Electrical Power and Machines Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

HARMONIC RESONANCE OVERVOLTAGE DURING MAIN POWER TRANSFORMER ENERGIZATION IN GRID-CONNECTED WIND FARMS

By

Ahmed Fouad Ibrahim Ahmed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree Of

MASTER of Science

in

Electrical Power and Machines Engineering

Prof. Dr. Mahmoud Ibrahim Gilany

Thesis Main Advisor

Prof. Dr. Abd Elbary Mohammed Mahdy

Internal Examiner

Prof. Dr. Salem Mahmoud Elkhodary
Faculty of Engineering, Ain Shams University

External Examiner

Approved by the

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer: Ahmed Fouad Ibrahim Ahmed

Date of Birth: 1 / 3 / 1987 **Nationality:** Egyptian

E-mail: Fouad_eng16@yahoo.com

Phone.: +20 / 1018156166 -

+20 / 1117307911

Address: Egypt – Minia el-kamh, Sharkia

Registration Date: 01 / 10 / 2012 **Awarding Date:** / 2017 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Mahmoud Ibrahim Gilany Dr. Mostafa Ahmed Elshahed Dr. Mahmoud Mohammed Sayed

Examiners:

Prof. Dr. Salem Mahmoud Elkhodary (External Examiner,

Professor at Ain Shams University)

Prof. Dr. Abd elbary Mohammed Mahdy (Internal Examiner)
Prof. Dr. Mahmoud Ibrahim Gilany (Thesis Main Advisor)

Title of Thesis:

Harmonic Resonance Overvoltage during Main Power Transformer Energization in Grid-connected Wind Farms

Key Words:

Transformer energization, Harmonic resonance overvoltage, Natural frequency, Wind farm feeders, Grid-connected wind farms.

Summary:

This thesis introduces a new study about the produced harmonic resonance overvoltage (HRO) during the energization of the main power transformers in grid-connected wind farms. The thesis studies some affecting factors on the produced HRO. It investigates the effect of the lengths of the overhead transmission lines (OHTLs) and the unloaded on-line transformer on the HRO. In addition, it investigates the effect of the wind farm feeders, connected to the secondary side of the on-line transformers, on the HRO.

Acknowledgments

"All the praises and thanks be to **Allah**, Who has guided us to this, and never could we have found guidance, were it not that Allah had guided us"

Then, I would like to express my sincere gratitude and appreciation to my supervisors; Prof. Dr. Mahmoud Gilany, Dr. Mostafa Elshahed, and Dr. Mahmoud Sayed (Cairo University) for their valuable advice, suggestions, guidance, and precious comments that improved the whole thesis and also their patience and encouragement throughout the period of the research.

Furthermore, I would like to express my deepest gratitude and thanks to my brother Eng. Ibrahim Fouad, my dear friend Eng. Osama Salah for their support, strong encouragement, and help.

A special thanks to Eng. Abd_Elfatah Helmy and Eng. Alaa Gamal (Zafarana transformer substation) for their help and kind support.

Finally, I can't forget to express my deep thanks and sincere gratitude to my parents, and my wife, for their patience, strong encouragement and kind support.

Dedication

This work is gratefully dedicated to:

My parents, my wife, and my little son Youssef

Table of Contents

Acknowledgr	nentsi
Dedication	iii
List of Tables	sxi
List of Figure	es xiii
List of Symbo	ols and Abbreviationsxix
Abstract	xxi
Chapter 1:	Introduction1
1.1.	Introduction1
1.2.	Problem Statement
1.3	2.2. Expected Reasons
1.3	2.3. Harmonic Resonance Overvoltages
1.3.	Thesis Objectives4
1.4.	Thesis Organization4
-	Harmonic Resonance Overvoltage: Background, Theories
	and Literature Review7
2.1.	Introduction7
2.2.	Background: Inrush Current7
2.3	2.1. Basics of Inrush Current
2.:	2.2. Factors affecting Inrush Current9
2.5	2.3. Worst Case of Energization

2.2.4.	Harmonics in Inrush Current	. 13
2.3. Ba	ckground: Resonance Phenomena	.14
2.3.2.	Series Resonance	. 14
2.3.3.	Parallel Resonance	. 15
2.4. Ba	ckground: Harmonic Resonance Overvoltage	.17
2.4.1.	Features of the Harmonic Resonance Overvoltage	. 18
2.4.2.	Main Affecting Factors on HRO	. 19
2.4.3.	Problems of the Harmonic Resonance Overvoltage	. 19
2.5. Th	eories	.20
2.5.1.	Magnetostriction Effect	. 20
2.5.2.	HRO in Wind Farms	. 20
2.6. Lit	erature Review: Harmonic Resonance Overvoltage	.22
2.6.1.	HRO in the Series Resonant Systems	. 22
2.6.2.	HRO in the Parallel Resonant Systems	. 23
2.6.3.	Literature Review of the HRO Influencing Factors	. 28
2.6.4.	Inrush Current Influencing Factors	. 28
2.6.5.	Resonance Phenomenon Influencing Factors	. 29
2.6.6.	Mitigation Methods of the Inrush Current	. 31
2.6.7.	Evaluation of the Literature Review and Thesis Work	. 31
Chapter 3: Syste	em Description, and Model Development	.35
3.1. Sy	stem Description	.35
3.1.1.	Zafarana Transformer Substation	. 35
3.1.2.	System under Study	. 36
3.2. Mo	odel Development	.38
3.2.1.	DIGSILENT PowerFactory Program	. 38

	3.	2.2.	Simulation of Different Elements	40
	3.3.	Mo	odel Validation	43
Chapte	r 4:	Simu	lation Results	45
	4.1.	Int	roduction	45
	4.	1.1.	General Assumption	46
	4.2.	Ca	se Study No. 1: Effect of the Extra High Voltage Ove	er
		He	ad Transmission Lines Lengths on the HRO	48
	4.	2.1.	System Modeling	49
	4.	2.2.	The Produced HRO	49
	4.	2.3.	Simulation Results	50
	4.	2.4.	HRO of the Existing 95 km OHTLs	52
	4.	2.5.	Evaluation of the Results of Cases Study No.1	54
	4.3.	Ca	se Study No. 2: Effect of the Unloaded On-line	
		Tra	ansformer in Parallel with the Energized One	54
	4	3.1.	Simulation Results	55
	4	3.2.	The Reason for the Increased Value of HRO	56
	4	3.3.	The Reason for the Increased Duration of HRO	57
	4.	3.4.	Evaluation of the Results of Cases Study No.2	58
	4.4.	Ca	se Study No. 3: Effect of Wind Farm Feeders (with	
		Eq	ual Secondary Cable Lengths) on HRO	58
	4.	4.1.	Methodology	58
	4.	4.2.	Simulation Results of Case Study No. 3	59
	4.	4.3.	Variation of the HRO Peak Values with the system natural frequencies	62
	4.4	4.4.	The Critical Overvoltage Values	