

Measurement of serum Klotho and its correlation with bone mineral density in patients withβ-Thalassemia Major

Thesis

Submitted for partial fulfillment of Master Degree
In Clinical Hematology

Presented by

Noha Seyam El Sayed

M.B., B.Ch, (Cairo University)

Supervised by

Prof. Dr. Mohammed Mahmoud Metwaly Mousa

Professor of Internal medicine and clinical Hematology Faculty of Medicine -Ain Shams University

Prof. Dr. Nevine Nabil Mostafa

Professor of Internal medicine and clinical Hematology Faculty of Medicine -Ain Shams University

Dr. Haitham Mohammed Mohammed Abdelbary

Professor of Internal medicine and clinical Hematology Faculty of Medicine –Ain Shams University

> Faculty of Medicine Ain Shams University 2017

قياس كلوثو بروتين في الدم و علاقته بكثافة المعادن في العظام لدى مرضى □ انيميا البحر المتوسط

رسالة

توطئة للحصول على درجة الماجيستير في أمراض الدم الاكلينيكية مقدمة من

🗆 نهى صيام السيد/الطبيبة

بكالوربوس الطب و الجراحة - جامعة القاهرة

تحت إشراف

□أد/ محمد محمود متولى موسى

أ أستاذ الباطنة و أمراض الدم الاكلينيكية كلية الطب _ جامعة عين شمس

أد/ نيفين نبيل مصطفى

أستاذ الباطنة و أمراض الدم الاكلينيكية كلية الطب عين شمس

د/ هیثم محمد محمد عبد الباری

مدرس الباطنة و أمراض الدم الإكلينيكية كلية الطب- جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٧

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof Dr. Mohammed Mohammed Metwaly Mousa**, Professor of clinical Hematology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof Dr. Nevine Nabil Mostafa,** Professor of clinical Hematology,
Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr**. **Haitham Mohammed Mohammed Abdelbary, Lecturer of clinical Hematology**, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family specially my Mother and my husband also my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Contents

Subjects		Page
•	List of Abbreviations	I
•	List of table	II
•	List of Figures	III
•	Introduction	1
•	Aim of the Work	3
•	Review of literature:	
•	Patients And Methods	57
•	Results	64
•	Discussion	87
•	Summary and conclusion	94
•	Recommendation	96
•	References	97
•	Arabic Summary	-

List of Abbreviations

ADHR : Autosomal dominant hypophosphatemic rickets

BMD :Bone mineral density
CKD :Chronic kidney disease

DXA :Dual energy X-ray absorptiometry

FGF23 :Fibroblast growth factor 23

FGFR1 :Fibroblast growth factor receptor 1

GH :Growth hormone
Hb :Hemoglobin
HCV :Hepatitis c virus

HIV Human immunodeficiency virus (AIDS)

IGF-1 Insulin like Growth Factor

MnSOD : Manganese superoxide dismutase

PTH :Parathyroid hormone

TRPV5 :Transient receptor potential cation channel subfamily member 5

β-TI :Beta thalassemia intermediaβ-TM :Beta thalassemia major

∠List of Table

List of Table

Tab. No.	Subject	Page
Table (1)	patients' descriptive statistics	64
Table (2)	Patients' demographic data	65
Table (3)	Patients' diagnosis	66
Table (4)	Patients' classification according to fragility	67
	fractures	
Table (5)	Patients' data according to splenectomy	68
Table (6)	cirrhotic and non-cirrhotic patients	68
Table (7)	classification according to Hepatitis C virus	69
Table (7)	previous infection	
Table (0)	Interpretation of T-score at neck of femur	70
Table (8)	according to WHO classification	
Table (0)	Interpretation of T-score at the spine (L2-L4)	71
Table (9)	according to WHO classification	
Table (10)	klotho level in patients and controls	73
Table (11)	difference of klotho according to Gender	74
Table (12)	klotho level and diagnosis	75
Table (13)	klotho according to diabetic patients	76
Table (14)	klotho and Fragility fractures	77
Toble (15)	klotho level according to splenectomized	78
Table (15)	patients	
Table (16)	klotho level and liver cirrhosis	79
Table (17)	klotho and HCV	80
Table (19)	Klotho levels and T-score interpretation at neck	81
Table (18)	of femur	
Table (19)	Klotho levels and T-score interpretation at	82
	Spine (L2-L4)	
Table (20)	klotho and iron chelators	83
Table (21)	klotho correlations with age, transfusion	84
Table (21)	frequency, blood chemistry and T-score	

€List of Figures

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Summary of proposed α -klotho protein functions.	24
Fig. (2)	Degradation of αII-spectrin	31
Fig. (3)	Characterization of degradation products of αII-spectrin and activation level of calpain	32
Fig. (4)	Changes of αII-spectrin, BDP-148, calpain, and calpastatin in the kidney of aged normal mice. Arrowheads indicate the positions of the corresponding molecules	33
Fig. (5)	The bone–kidney endocrine axis that regulates phosphate and vitamin D homeostasis. High serum phosphate increases FGF23 expression in the bone.	38
Fig. (6)	Patients' demographic data	65
Fig. (7)	patients' diagnosis	66
Fig. (8)	patients' classification according to diabetes	66
Fig. (9)	Patients' classification according to fragility fractures	67
Fig. (10)	cirrhotic and non-cirrhotic patients	68
Fig. (11)	classification according to Hepatitis C virus previous infection	69
Fig. (12)	Interpretation of T-score at neck of femur according to WHO classification	70
Fig. (13)	Interpretation of T-score at the spine (L2-L4) according to WHO classification	71
Fig. (14)	patients who receive Iron chelator agents.	72
Fig. (15)	klotho levels in patients and controls	73
Fig. (16)	difference of klotho according to Gender	74
Fig. (17)	klotho level and diagnosis	75
Fig. (18)	klotho according to diabetes	76
Fig. (19)	klotho and fragility fractures	77
Fig. (20)	klotho level according to splenectomy	78
Fig. (21)	klotho level and liver cirrhosis	79
Fig. (22)	Klotho and HCV	80
Fig. (23)	Klotho levels and T-score interpretation at neck of femur	81
Fig. (24)	Klotho levels and T-score interpretation at Spine (L2-L4)	82
Fig. (25)	klotho and iron chelators	83

∠List of Figures

Fig. No.	Subject	Page
Fig. (26)	negative correlation between klotho and serum calcium	85
Fig. (27)	positive correlation between klotho levels and T-score at neck of femur	85
Fig. (28)	positive correlation between klotho levels and T-score at L2-L4 at spine	86

Abstract:

The aim of this study was to measure plasma levels of the secreted protein Klotho in β-thalassemia major patient and the existence of correlations between the protein level and osteoporosis and fragility fractures. Also, we compared the level of the protein in patients and in healthy controls.50 patients with β-thalassemia major and 30 healthy volunteers were enrolled. Klotho level in plasma was measured by mean of an ELISA test. CBC, renal functions, liver functions, viral markers (HBs Ag, HCV Ab), calcium, phosphorus and serum ferritin level were measured by standard clinical techniques. DEXA was used to measure bone mineral density (BMD) at the lumbar spine (L2–L4) and femoral neck. We found that the Klotho protein concentration was lower in the blood of patients with β-thalassemia major than in healthy controls. Also, the klotho concentration was lower in patients with osteoporosis or osteopenia than those with normal BMD. Also, lower in patients with history of fragility fractures.

Key words:

Klotho, Osteoporosis, fragility fractures.

Introduction

β- thalassemia syndromes are a group of hereditary blood disorders characterized by reduced or absent β-globin synthesis resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals (*Borgna-Pignatti et al.*, 2011).

Complications of the disease include heart problems which are responsible for 70% of deaths (*Borgna-Pignatti et al.*, 2004), Liver diseases due to transfusional iron overload and transmitted viral infections, endocrine problems as hypogonadism in over 50% of patients, diabetes and hypothyroidism (*Costin et al.*, 1979), (*Borgna-Pignatti et al.*1985).

Fragility fractures are common in these patients (5). Osteoporosis affects approximately 51% of the patients with another 45% suffering from osteopenias (*Origa et al.*, 2005). The reduced bone mineral density and susceptibility to fractures has been attributed, in addition to hyperactivity of the bone marrow due to endocrine dysfunction, iron overload, chelation therapy, Vitamin D deficiency, and lack of exercise (*Jensen et al.*, 1998).

In recent years, researchers have focused the attention on the Klotho gene which encodes a protein that is expressed in the kidney, parathyroid glands, and in the choroid plexus. The gene was identified for the first time in mouse knock-out mutants for the gene. These animals develop an 'aging' phenotype which includes, reduced bone density, growth retardation, hypogonadism and vascular calcification (*Kuro-o et al.*, 2010).

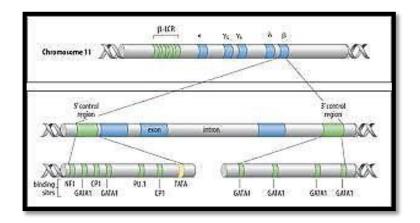
The secreted protein is present in blood, urine and cerebrospinal fluid (*Imura et al.*, 2004). it is involved in calcium reabsorption in the kidney in distal tubules the loss of calcium in the kidney may lead to an increment in calcium absorption from the bone (*Imura et al.*, 2007).

Researchers hypothesized a possible involvement of Klotho in the appearance of clinical complication in b thalassemia major due to similarity between b thalassemia major and knock-out mouse phenotype.

Aim of the work

The aim of this study is to compare Klotho plasma levels in β -Thalassemia major patients with healthy controls and to correlate between the protein level and osteoporosis.

.


Thalassemia

The term thalassemia is derived from the Greek, Thalassa (sea) and haima (blood). Beta-thalassemia includes three main forms: Thalassemia Major, variably referred to as "Cooley's Anemia" and "Mediterranean Anemia", Thalassemia Intermedia and Thalassemia Minor also called "beta-thalassemia carrier", "beta-thalassemia trait" or "heterozygous beta-thalassemia". Apart from the rare dominant forms, subjects with thalassemia major are homozygotes or compound heterozygotes for beta⁰ or beta⁺ genes, subjects with thalassemia intermedia are mostly homozygotes or compound heterozygotes and subjects with thalassemia minor are mostly heterozygotes.

The β -globin gene is located in the short arm of chromosome 11 in a region containing also the δ gene, the embryonic ϵ gene, the fetal G gamma and A gamma genes, and the pseudogene β 1(*Fritsch et al.*,1980)

The five functional globin genes are arranged in the order of their developmental expression. The β -globin genes are subject to a very complex regulatory mechanism, acting at the level of single genes as well as of the entire β cluster, β -Thalassemia mutations result in either a complete absence of β -globin chains (β 0-thalassemia) or in a largely variable reduction of β -globin synthesis (β +-thalassemia). More than 200 different mutations producing β -thalassemia have been so far described; the large majority are point

mutations in functionally important sequences of the β -globin gene, while in contrast to α -thalassemia, gene deletion is a rare cause of β -thalassemia (*Fullerton et al.*, 1994).

β-thalassemia phenotypes are variable, ranging from the severe transfusion dependent thalassemia major to the thalassemia form of intermedia. Thalassemia mild intermedia does not require transfusion or only sporadic or intermittent transfusions. Thalassemia minor indicates the usually heterozygous state. which is completely asymptomatic. Thalassemia minima was used in the Italian literature to indicate a carrier in whom no hematologic symptoms. Sometimes the term of thalassemia minima was used to indicate the condition of silent carrier (Danjou et al., 2011).