

Impact of Ventricular Septal Defect Diameter on Growth and Chest Infections in Children

Thesis

Submitted for Partial Fulfillment of Master Degree In Pediatrics

By

Mohammed Awad Bessar

M.B.B.Ch (2011)

Under Supervision of

Prof. Dr. Alyaa Amal Kotby

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Wafaa Abd El Samie Kandeel

Professor of Biological Anthropology National Research Centre

Asst. Prof. Dr. Waleed Mohamed ElGuindy

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Alyaa Amal Kotby**, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement which made possible the completion of this work, Personally I would like to express my gratitude for the valuable life lessons I learnt from her great experiences and her highly professional attitude and organization, I'm really blessed for this great opportunity to be under her supervision

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Wafaa Abd El Samie Kandeel**, Professor of Biological Anthropology, National Research Centre, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work. I must admit that I loved working with such an honorable charachter

I am deeply thankful to Asst. Prof. Dr. Waleed Mohamed ElGuindy, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance. Personally I'm very lucky for dealing with and learning from such a decent professor

I wish to introduce my deep respect and thanks to **Dr. Khaled Helmi El-Wakeel and Dr. Naglaa Abd El Halim Hassan** lecturers of Biological Anthropology, National Research Centre, for their supervision and cooperation.

I would like to express my hearty thanks to all my family and beloveds for their support till this work was completed.

Mohammed Awad Bessar

Contents

List o	f Abbreviations	I
List o	f Tables	II
List o	f Figures	IV
Intro	duction	1
Aim o	of the Work	4
Revie	w of Literature	
• Ch	apter (1): Ventricular Septal Defect	5
×	Congenital Heart Disease	5
×	Ventricular septal defect	7
×	Anatomy	8
×	Physiopathology	12
×	Natural Cascade	13
×	Clinical presentation and complications	15
×	Ventricular Septal defect and Chest Infections	16
×	Diagnosis	18
×	Therapy	24
• Ch	apter (2): Growth and Development	.30
×	Definition and Physiology	30
×	Aspects of Growth and Development	30
×	Periods of Growth	32
×	Regulation of Growth	40
×	Anthropometric measurements for growth assessment	45
×	Growth and congenital heart diseases	52

Contents (Cont....)

Subjects and Methods	55
Results	69
Discussion	91
Summary	98
Conclusion	102
Recommendations	103
References	104
Appendices	142
Arabic Summary	

List of Abbreviations

Abb.		Meaning
CHD	:	Congenital heart diseases
ASD	:	Atrial septal defect
VSD	:	Ventricular septal defect
TGA	:	Transposition of the great arteries
TOF	:	Tetralogy of Fallot
DORV	:	Double outlet right ventricle
PTA	:	Persistent truncus arteriosus
Qp/Qs	:	Pulmonary-Systemic Flow Ratio
ECG	:	Electrocardiography
PDA	:	Patent ductus arteriosus
DIA	:	Interatrial defects
TEE	:	Trans-oesophageal echocardiography
ACE	:	Angiotensin-converting enzyme
MRI	:	Magnetic resonance imaging
A-V	:	Atrioventricular
НС	:	Head circumference
CC	:	Chest circumference
GH	:	Growth hormone
PEM	:	Protein-energy malnutrition
WHO	:	World Health Organization
BMI	:	Body mass index
DVSD/DAR	:	Ventricular septal defect size/diameter of aortic root
LVOT	:	Left ventricular outflow tract diameter
LVOT VTI	:	LVOT subvalvular velocity time integral

Abb.		Meaning
RVOT	:	Right ventricular outflow tract diameter
RVOT VTI	:	RVOT subvalvular velocity time integral
Ratio 1	:	Minimum VSD diameter
Ratio 2	:	Minimum VSD diameter/ Aortic root diameter
Ratio 3	:	Mean VSD diameter/ Aortic root diameter
SPSS	:	Statistical Program for Social Science
SD	:	Standard deviation
ANOVA	:	A one-way analysis of variance
SPSS	:	Statistical Program for Social Science

List of Tables

Table	Title	Page
1	Interpretive values of QP/QS ratio	61
2	The scoring methods used to evaluate the chest conditions of all studied subjects	68
3	Age data of studied groups	69
4	Gender distribution of studied groups	69
5	Anthropometric data of studied groups	70
6	Percentage and frequency of different V.S.D Types	71
7	Echocardiographic parameters and indices of the patients group	72
8	Descriptive data of the studied echocardiographic ratios	72
9	Percentage and frequency of QP/QS grades	73
10	Chest infection score data of the studied groups	74
11	Descriptive data of the studied ratios, echocardiographic indices and chest infection score of samples of the patients group	75
12	Comparison between patients (group I) and controls (group Π) as regards age	76
13	Comparison between patients (group I) and controls (group Π) as regards sex	76
14	ANOVA test in between different types of VSD in relation to anthropometric parameters	77
15	ANOVA test in between different types of VSD in relation to shunt echocardiographic parameters	78
16	ANOVA test in between different types of VSD in relation to chest infection score	78

Table	Title	Page
17	Chest Infection Score comparison between Patients (Group I) and Control (Group II) using Mann-Whitney Test	79
18	Correlation between minimum VSD diameter and patient's anthropometric data	80
19	Correlation between minimum VSD diameter and patient's shunt echocardiographic parameters	81
20	Correlation between minimum VSD diameter and patient's chest infection score	81
21	Correlation between (minimum VSD diameter /Aortic root diameter) and patient's anthropometric data	83
22	Correlation between (minimum VSD diameter/ Aortic root diameter) and patient's shunt echocardiographic parameters	84
23	Correlation between (minimum VSD diameter/ Aortic root diameter) and patient's chest infection score	84
24	Correlation between (Mean VSD diameter/ Aortic root diameter) and patient's anthropometric data	86
25	Correlation between (Mean VSD diameter/ Aortic root diameter) and patient's shunt echocardiographic parameters	87
26	Correlation between (Mean VSD diameter / Aortic root diameter) and patient's chest infection score	87
27	Correlation between pressure gradient across the VSD and patient's chest infection score	89
28	Correlation between QP/QS and patient's chest infection score	90

List of Figures

Figure	Title	Page
1	Heart structures affected by congenital deformities with estimated incidences	6
2	Steps in the embryologic formation of the heart	8
3	Diagram of various parts of the ventricular septum	10
4	Muscular septal defect in the trabeculated portion of the interventricular septum	11
5	ECG in VSD patient with chronic pulmonary hypertension	18
6	Radiograph in a patient with a ventricular septal defect	19
7	Echocardiogram in a patient with a perimembranous ventricular septal defect	21
8	Cardiac NMR, 4 Chambers projection, mid muscular VSD	22
9	An angiogram obtained during catheterization	23
10	Pulmonary artery banding technique	27
11	The AMPLATZER septal occlude	29
12	The child's cephalocaudal and proximodistal patterns of growth	31
13	Blastocyst just before implantation	34
14	Fetal period development weeks 9-11	35
15	Fetal growth development weeks 13-20	36
16	A 3 years old toddler trying to learn how to ride a tricycle	37
17	A 5 years old girl learning how to write down the alphabetical letters	38
18	Physical development and growth during adolescence	39

Figure	Title	Page
19	Echocardiography machine: Vivid E9 (GE, Horton, Norway).	57
20	M-mode of aorta and left atrium measurements	58
21	M mode on long axis left parasternal view showing normal EF	59
22	Trans Thoracic Echocardiographyc and color Doppler examination- Left Parasternal Aortic Short axis view	60
23	An example of 2-D echocardiography that shows RVOT and RVOT VTI	61
24	Seca delta Mod 707 Standing scale	64
25	Salter Electronic Baby and Toddler Scale	64
26	Height board for measuring the child's height	65
27	SECA 417 Portabale Foldable Infantometer	66
28	Measurement of head circumference of an infant using a flexible non stretch tape	66
29	Measuring of chest circumference of an infant using a flexible non stretch tape	67
30	Sex distribution in cases and controls	69
31	Percentage and frequency of different V.S.D Types	71
32	Percentage of QP/QS grades	73
33	Mean values of chest infection score data	74
34	Mean values of Chest Infection score using Mann- Whitney Test	79
35	Correlation between minimum diameter of VSD and chest infection score	82
36	Correlation between Ratio 2 and chest infection score	85
37	Correlation between Ratio 3 and chest infection score	88

Figure	Title	Page
38	Correlation between Pressure gradient across the VSD and chest infection score	89
39	Correlation between QP/QS and chest infection score	90

Introduction

Aim of the Work

Chapter (1)

Ventricular Septal Defect

