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ABSTRACT

Characteristic functions (CF) were originally developed as a tool for
the solution of problems in probability theory and admit many important
applications in this branch of Mathematics as well as in Mathematical
Statistics. The empirical characteristic function (ECF) is the sample
counterpart of the CF. It was defined by Parzen (1962) and can be used in
statistical inference. It can be used for parameter estimation and

hypothesis testing.

In the literature, there are many studies which introduced goodness-
of-fit tests based on the ECF using different methodologies. The basic
idea of the ECF method is to compare the CF derived from the
hypothesized model with the ECF obtained from the sample data.

In this thesis, goodness-of-fit tests based on the ECF are used for
testing the fit of the generalized exponential distribution. In addition, a
power comparison is conducted with other common goodness-of-fit tests
that are the tests based on empirical distribution function (EDF). Also, the
effect of the estimation method used for estimating the unknown
parameters of the generalized exponential distribution on the power of the
ECF test is studied. Finally, the sampling distribution for the ECF test

statistic is obtained using Pearson system.

Vi



Chapter I
INTRODUCTION

A statistical problem encountered in many areas of research is the
need to assess whether a sample of observations comes from a specified
distribution. Typically such situations are known as 'Goodness of Fit'
problems, that is, how well are the data modeled by a certain distribution?
A goodness-of-fit test uses the properties of a hypothesized distribution to
assess whether a sample of observations is generated from that

distribution.

Characteristic functions (CF) were originally developed as a tool for
the solution of problems in probability theory and admit many important
applications in this branch of Mathematics as well as in Mathematical
Statistics. The empirical characteristic function (ECF) is the sample
counterpart of the CF. It was defined by Parzen (1962) and can be used in
statistical inference. It can be used for parameter estimation and

hypothesis testing.

In the literature, there are many studies which introduced goodness-
of-fit tests based on the ECF using different methodologies. The basic
idea of the ECF method is to compare the CF derived from the
hypothesized model with the ECF obtained from the sample data.

The generalized exponential distribution was introduced by Gupta
and Kundu (1999). This distribution can be used quite effectively in
analyzing many lifetime data, particularly in place of the two-parameter

gamma and Weibull distributions. It is observed that the generalized



exponential distribution can be considered for situations where a skewed

distribution for a non-negative random variable is needed.

In this thesis, goodness-of-fit tests based on the ECF are used for
testing the fit of the generalized exponential distribution. In addition, a
power comparison is conducted with other common goodness-of-fit tests
that are the tests based on empirical distribution function (EDF). Also, the
effect of the estimation method used for estimating the unknown
parameters of the generalized exponential distribution on the power of the
ECF test is studied. Finally, the sampling distribution for the ECF test
statistic is obtained using Pearson system. All the Algorithms in this thesis

are implemented using the Mathcad (version 13) software.

This thesis 1s organized as follows. Some important definitions and
notation are introduced in Chapter II. Chapter III includes a literature
review about different goodness-of-fit tests that are based on ECF.
Chapter IV, which is the main analytical chapter, introduces a power
comparison between the ECF and EDF tests, for testing the fit of the
generalized exponential distribution. In addition, the same chapter
includes a study about the effect of parameter estimation method on the
power of the ECF test for testing the fit of the generalized exponential
distribution. Finally, Chapter IV contains a section about obtaining the

sampling distribution of the ECF test statistic using Pearson system.

The results of all simulation experiment conducted in this thesis are
organized in tables in appendix A. Also, appendix B contains all the

Mathcad programs implemented in this thesis.



Chapter 11
DEFINITIONS AND NOTATION

This chapter is devoted to some important definitions and notation that

will be used in the present dissertation.

(2.1) Methods of Estimation

In the literature, there are different methods for estimating the unknown
parameters of a statistical distribution. The most commonly used among these

methods are the method of moments and method of maximum likelihood.

(2.1.1) Method of Moments

The method of moments (MM) is a technique for constructing estimators
for the parameters which is based on matching the sample moments with the
corresponding population moments. It is frequently called the method of
moments because it is understood that, whenever possible, the parameter
should be estimated by using moments, particularly, the lowest order moments
that are convenient. The MM method provides estimators that are consistent
but not as efficient as the maximum likelihood ones. It is often used because it
leads to very simple computations, unlike maximum likelthood method which

can become very cumbersome.

The MM method consists of equating the first few moments of a
population to the corresponding moments of a sample, thus getting a number
of equations that are needed to be solved in terms of the unknown parameters

of the population. Therefore, if a population has k& unknown parameters

6 6 @, then the parameter estimates & 6 6 can be obtained by

solving the following system of simultaneous equations:



' 1 n
. th .
where m, =—Zx,.r is the ' sample moment of a set of observations
n o

X[,Xy,.,X, and 4 @ & @)=E(X') is the #" population moment (see

Miller and Miller, 1999).

(2.1.2) Method of Maximum Likelihood

The maximum likelihood (ML) method is one of the most important
methods in the theory of estimation. The idea behind maximum likelihood
parameter estimation is to determine the parameters that maximize the
probability (likelihood) of the sample data. ML estimation begins with writing
a mathematical expression known as the likelihood function of the sample
data. The likelihood of a set of data is the probability of obtaining that
particular set of data, given the chosen probability distribution model. This
expression contains the unknown model parameters. The values of these
parameters that maximize the sample likelihood are known as the maximum

likelihood estimates.

If x,x,,.,x, are the values of a random sample from a distribution

having probability density functionf (x;€), the likelihood function L(#) of

the sample is given by:

L@ = .0, 0€Q,

where €2 is a given domain for the values of 6. Here f (X ,,X 5,0, 3 6) 15 the
value of the joint probability density of the random variables X, X ,,... X, at
X,=x,X,=x,,..,X,=x,. Thus, the method of ML consists of maximizing

the likelihood function with respect to &. The value of & that maximizes the

likelihood function is referred to as the maximum likelihood estimate of €. In



other words, the maximum likelihood estimate of & is the solution of the
dL(o)| _ 0.

6=6

equation

If the likelihood function contains k parameters, i.e. if:

L@@ 6 6 = 6o 6), 66 6cQ,

PN - - neo "1 2L LY

then the maximum likelihood estimates of the parameters ,,6,,...,6, are the

values é /61/ /61 in Q which maximize L(8,,6,.,...,8,). These values are

obtained by simultaneously solving the following k£ equations:

LB 6. 8)

Since the maximum value of L(€) will occur at the same points as the
maximum value of In[L(8)], it will be easier to work with the logarithm of the

likelihood function (see Miller and Miller, 1999).

(2.2) Empirical Characteristic Functions

Characteristic functions were originally developed as a tool for the
solution of problems in probability theory and admit many important
applications in this branch of Mathematics as well as in Mathematical

Statistics.

Let X be a random variable and let F(x) be the distribution function of X
given by F(x) =Pr[ X < x], xe R. Then, the characteristic function (CF), ®(z),
of the random variable X [or of the distribution function F(x)] is a complex

valued function given by:



oo

D)=E (" )= [e"f (x)dx , 2.1)

—oo

where e R and i =+/—1. For discrete random variables the CF reduces to:

@)= e"P(X =r).

Note that according to Euler's formula, for any real number z:
e” =cosz+isinz,
therefore ®(¢) in (2.1) could be expressed as follows:

oo oo

O(t) = E (costX )+iE (sintX ) = | jsimxf (x )dx .

—oco —oo

The main advantage of the CF over other transforms such as the
probability generating function or the moment generating function is that the
integral exists for any probability distribution. Characteristic functions have
the following properties:

.  @0)=1

ii. |®@)|<1 foralls

iii.  The characteristic function of a + bX'is e ®(bt) .

iv. A characteristic function @ is real valued if and only if the distribution
of the corresponding random variable X is symmetric about zero, that is
ifand only if P[X >z]=P[X <—z] forall z> 0.

v.  The characteristic function of the sum of independent random variables
is the product of the characteristic functions of each of the random

variables.



vi.  Two distribution functions F,(x) and F,(x) are identical if, and only if,
their characteristic functions @, (r) and ®,(r) are identical. In other

words, a distribution function £ is determined uniquely by its CF ®.

For additional information on the above properties of characteristic

functions see Lukacs (1970).

The Empirical characteristic function (ECF) is the sample counterpart of

the CF. It was defined by Parzen (1962) as:

1< 1 n

D, (t>=;Z - {—Z } (2.2)

j=l nj=1

where X, X,,...,X, 1s a random sample of independently and identically

n

distributed random variables.

The ECF can be used in statistical inference. The method of model-fitting
via the ECF was discussed by many researchers. The advantage of using this
procedure is that one can avoid difficulties arising in calculating or
maximizing the likelihood function. Thus, it is a desirable estimation method
when the maximum likelihood approach encounters difficulties but the CF has
a tractable expression. The basic idea of the ECF method is to compare the CF

derived from the model with the ECF obtained from data.

The justification for the ECF method is that there is a one-to-one
correspondence between the CF and its distribution function. In other words, a
distribution function is determined uniquely by its CF. As a consequence, the
ECF retains all information in the sample. This observation suggests that
estimation and inference via the ECF should work as efficiently as the
likelihood-based approaches. The general idea for ECF estimation is to

minimize various distance measures between the ECF and CF (Yu, 2004).



Also, the idea of hypothesis testing using the ECF is based on measuring the
distance between the ECF and the CF of a random variable under the null

hypothesis.

Many studies presented different distance measures between the ECF
calculated from a sample and the CF of a population. For example, Besbeas
and Morgan (2004) used the integral of the squared modulus of the difference
between the ECF and CF with a weight function for estimating the parameters
in a mixture of normal densities. The parameter estimators are obtained by

minimizing the following criterion:

1(6 = T]cp”\ —®_ ) aw ()

—oo

with respect to &, where @ is the vector of unknown parameters. W (r) is some
weight function selected to ensure convergence of the integral 7(8). In

addition, Feuerverger and Mureika (1977) constructed a symmetry test based
on the weighted integral of the squared difference between the imaginary part

of @ (t) and zero. Murota and Takeuchi (1981) used the studentized ECF to

test the shape of the distribution. The studentized ECF is given by:

o,0)=2, (/)

where s’ =ﬁzn:(Xj ~X) and )7=%Zn:)(j.
Jj=1 Jj=1

(2.3) Goodness-of-Fit Tests

A statistical problem encountered in many areas of research is the need to
assess whether a sample of observations comes from a specified distribution.
Typically such situations are known as 'Goodness of Fit' problems, that is, how
well are the data modeled by a certain distribution? If the data are univariate or

multivariate, continuous or discrete, ordinal or nominal, researchers are



