The relation between right and left ventricular functions in pediatric dilated cardiomyopathy assessed by tissue Doppler, A study in pediatric dilated cardiomyopathy patients at Cairo University Pediatric Hospital.

Thesis
Submitted for partial fulfillment
of Master degree in pediatrics

By **Dr. Osama Nasr Eddeen Abd El Fattah**M.B.B.Ch.

Supervisors

Prof. Dr. Fatma AlZahraa Mostafa GomaaProfessor of Pediatrics, Faculty of Medicine, Cairo
University

Prof. Dr. Inas Abd El Sattar Saad
Professor of Pediatrics, Faculty of Medicine, Cairo
University

Dr. Nashwa Mostafa Mohammad
Lecturer of Pediatrics, Faculty of Medicine, Cairo
University

Faculty of Medicine Cairo University

2013

Acknowledgment

First and foremost, I feel always indebted to God, the most kind and merciful.

It is my pleasure to express my deepest thanks and gratitude to **Prof. Dr. Fatma AlZahraa Mostafa Gomaa**, Professor of Pediatrics, Cairo University for her great help and support, kind supervision and continuous encouragement. I am truly grateful for her.

I am truly indebted to **Prof. Dr. Inas Abd El Sattar Saad**, Professor of Pediatrics, Cairo University for her meticulous supervision, encouragement, unlimited assistance and guidance during this work.

I would like also to express my profound thanks and gratitude to **Dr. Nashwa Mostafa Mohammad**, Lecturer of Pediatrics, Cairo University for her constructive guidance, remarkable effort, and scientific assistance and whatever have been said, is little to express my respect and thanks to her.

Finally, deepest thanks and love to my family for their strong support.

List of Contents

Title	Page
Abstract	A
List of Abbreviations	В
List of Figures	C
List of Tables	D
Introduction and Aim of the Work	1
Review of Literature	3
• Chapter 1: Overview of Dilated Cardiomyopathy	4
 Chapter 2: Tissue Doppler Imaging; principles and clinical applications 	20
• Chapter 3: Assessment of left ventricular function	29
• Chapter 4: Assessment of right ventricular function by echocardiography	43
Patient and Methods	58
Results	63
Discussion	88
Conclusion	95
Recommendations	96
Summary	97
References	99
Arabic Summary	113

Abstract

Dilated cardiomyopathy is not purely a disease of the left ventricle. Right ventricular systolic and diastolic functions are impaired almost universally in children with dilated cardiomyopathy. Tissue Doppler imaging plays an essential role in evaluation of left and right ventricular functions. *Aim of the work:* we aimed to assess right ventricular systolic and diastolic functions in patients with dilated cardiomyopathy and to detect how much the right ventricular function impairment is correlated with the left ventricular function using tissue Doppler echocardiography.

Methods: cross sectional analytical study was conducted on 30 cases with dilated cardiomyopathy their ages ranging from 2 months to 12 years with median age of 2.2 years in addition to 30 age and sex matched controls. Both cases and controls were subjected to tissue Doppler echocardiography. LV dimensions were measured from M-mode and LV systolic function was calculated. Right ventricular function was assessed by Doppler tissue S', E' and A' waves; RVMPI; TAPSE and RVFAC.

Results: Right ventricular systolic and diastolic functions were significantly impaired in dilated cardiomyopathy patients. Tricuspid S', E' and TAPSE were significantly reduced (p < 0.05). Tricuspid S' and E' waves were decreased significantly with decreasing LVFS (r=0.518, r=0.481) respectively. **Conclusion:** right ventricular function is impaired in patients with dilated cardiomyopathy and correlated to the severity of left ventricular dysfunction.

Key words: dilated cardiomyopathy, Tissue Doppler echocardiography, right ventricular functions, left ventricular functions.

Abbreviations

2D	2-Dimensional
2DE	2 Dimensional Echocardiography
3D	3-Dimensional
3DE	3 Dimensional Echocardiography
A'	Late Diastolic Wave
ACE	Angiotensin-Converting Enzyme
AHA	American Heart Association
AMI	Acute Myocardial Infarction
ARVC	Arrhythmogenic Right Ventricular Cardiomyopathy
ARVC/D	Arrhythmogenic Right Ventricular
ARVCID	Cardiomyopathy/Dysplasia
AS	Aortic Stenosis
AV	Atrioventricular
BSA	Body Surface Area
CAD	Coronary Artery Disease
CHF	Congestive Heart Failure
CMP	Cardiomyopathy
CMR	Cardiac Magnetic Resonance
DCM	Dilated Cardiomyopathy
DS	Disc Summation
DTI	Doppler Tissue Imaging
E'	Early Diastolic Wave
E/E'	E' Corrected For The TV Early Filling Velocity
Ea	Early Myocardial Relaxation Velocity
ECG	Electrocardiogram
EDV	End-Diastolic Volume
EF	Ejection Fraction
Ei	Eccentricity Index
L	I .

ESV	End-Systolic Volume
ET	Ejection Time
FS	Fractional Shortening
HCM	Hypertrophic Cardiomyopathy
ICT	Isovolumic Contraction Time
IRT	Isovolumic Relaxation Time
IVCV	Isovolumic Myocardial Contraction Velocity
IVRT-PW	Isovolumetric Relaxation Time By Pulsed Wave
IVRT-TD	Isovolumetric Relaxation Time By Tissue Doppler
IVRV	Isovolumic Myocardial Relaxation Velocity
LBBB	Left Bundle Branch Block
LV	Left Ventricular
LVEDD	Left Ventricular End-Diastolic Dimension
LVEDV	Left Ventricular End-Diastolic Volume
LVEF	Left Ventricular Ejection Fraction
LVESD	Left Ventricular End-Systolic Dimension
LVESV	Left Ventricular End-Systolic Volume
LVFP	LV Filling Pressure
LVH	Left Ventricular Hypertrophy
LVNC	Left Ventricular Non-Compaction Cardiomyopathy
MPI	Myocardial Performance Index
MRI	Magnetic Resonance Imaging
NYHA	New York Heart Association
PV	Pulmonary Valve
PVR	Pulmonary Vascular Resistance
PW	Pulsed Wave
RCM	Restrictive Cardiomyopathy
RV	Right Ventricular
RVD	Right Ventricular Dysfunction

RVD	Right Ventricular Diastolic Area
RVFAC	RV Fractional Area Change
RVMPI	Right Ventricular Myocardial Performance Index
RVOT	RV Outflow Tract
RVS	Right Ventricular Systolic Area
S'	Peak Systolic Wave
Sa	Systolic Myocardial Velocity
SD	Standard Deviation
SI	Strain Imaging
STE	Speckle Tracking Echocardiography
TAM	Tricuspid Annular Motion
TAPSE	Tricuspid Annular Plane Systolic Excursion
TDI	Tissue Doppler Imaging
TV	Tricuspid Valve
TVI	Tissue Velocity Imaging
US	United States
WHO	World Health Organization

List of Figures

	Title	Page
Figure (1)	Gross pathology of dilated cardiomyopathy	10
Figure (2)	Microscopic pathology of DCM	11
Figure (3)	Chest radiograph of patient with dilated cardiomyopathy	14
Figure (4)	Analysis of ultrasound waves by continuous, pulsed wave and colour Doppler	23
Figure (5)	3DE measurement of LV volumes	30
Figure (6)	LV mass measurement with 3DE	31
Figure (7)	Left ventricular fractional shortening calculation using M-mode echocardiography	34
Figure (8)	Left ventricular ejection fraction calculation using the modified Simpson method	35
Figure (9)	Measurement of mitral valve annulus displacement using M-mode	36
Figure (10)	Diagram illustrating measurement of the MPI	37
Figure (11)	Diagram of the 2-chamber view, 4-chamber view and short-axis planes for the recommended 17-segment system of the LV	39
Figure (12)	A circumferential polar plot of the 17 myocardial segments of the LV	39
Figure (13)	Diagram of the right ventricle chamber components	44
Figure (14)	Measurement of RV chamber dimensions	46
Figure (15)	Measurement of RV fractional area change	47
Figure (16)	Measurement of tricuspid annular motion	48
Figure (17)	Measurement of RVMPI using pulsed wave Doppler	50
Figure (18)	Diagram illustrating measurement of the RVMPI	50
Figure (19)	Measurement of RV Tei index using tissue Doppler	51
Figure (20)	Color DTI waveforms obtained from the RV free wall	53
Figure (21)	Color DTI in a patient with RV dysfunction	54
Figure (22)	Limitations of TDI measurements	56
Figure (23)	Sex distribution of studied cases and control	63
Figure (24)	Comparison between mean and SD of LVEDD among case and control groups	67
Figure (25)	Comparison between mean and SD of LVESD among case and control groups	68

Figure (26)	Comparison between mean and SD of LVFS among case and control groups	68
Figure (27)	Comparison between mean and SD of tricuspid S' among case and control groups	70
Figure (28)	Comparison between mean and SD of tricuspid E' among case and control groups	70
Figure (29)	Comparison between mean and SD of TAPSE among case and control groups	71
Figure (30)	Correlation between LVFS and S'	74
Figure (31)	Correlation between LVFS and E'	74
Figure (32)	Correlation between IVRT-TD and LV MPI	75
Figure (33)	Correlation between LV ejection time and RV ejection time	75
Figure (34)	Correlation between RV ejection time and LV MPI	76
Figure (35)	Correlation between LVEDD and RVD	76
Figure (36)	Correlation between LVESD and RVD	77
Figure (37)	Correlation between LVEDD and RVS	77
Figure (38)	Correlation between LVESD and RVS	78
Figure (39)	Comparison between cases with and without pulmonary congestion regarding mean LVFS	80
Figure (40)	Comparison between cases with and without left bundle branch block (LBBB) regarding mean LVFS	81
Figure (41)	Comparison between cases with and without hepatomegaly regarding TAPSE	84

List of Tables

	Title	Page
Table (1)	Classification of cardiomyopathy (WHO)	6
Table (2)	Classification of cardiomyopathy (European Society of Cardiology)	6
Table (3)	Classification of cardiomyopathy (AHA)	6
Table (4)	Staging and classes of DCM (NYHA classification)	13
Table (5)	Main applications of TDI in cardiology	24
Table (6)	Echocardiographic methods used for the assessment of RV size and function	43
Table (7)	Normal echocardiographic values of the right ventricle	57
Table (8)	Age and sex matching between cases and controls	63
Table (9)	Anthropometric measures and growth parameters of the studied cases	64
Table (10)	Weight and Height Centile data of the studied cases	64
Table (11)	Vital signs of the studied cases	64
Table (12)	Clinical findings of the studied cases	65
Table (13)	Heart failure in the studied patients according to NYHA and modified Ross classification	65
Table (14)	ECG findings of the studied cases	66
Table (15)	X-ray findings of the studied cases	66
Table (16)	Comparison between studied cases and controls regarding LV echocardiographic parameters	67
Table (17)	Comparison between studied cases and controls regarding RV echocardiographic parameters	69
Table (18)	Correlation between right and left echocardiographic indices of the studied cases	73
Table (19)	Correlation between vital signs and growth parameters in the studied cases and LVEDD, LVFS and LV-MPI	79
Table (20)	Comparison between cases with and without hepatomegaly regarding LVEDD, LVFS and LV-MPI	79
Table (21)	Comparison between cases with and without lower limb edema regarding	79

	LVEDD, LVFS and LV-MPI	
	Comparison between cases with and	
Table (22)	without pulmonary congestion regarding	80
	LVEDD, LVFS and LV-MPI	00
	Comparison between cases with and	
Table (23)	without left bundle branch block (LBBB)	81
1 abic (23)	regarding LVEDD, LVFS and LV-MPI	01
	Comparison between cases with and	
Table (24)	without left axis deviation regarding	82
1 abie (24)		02
	LVEDD, LVFS and LV-MPI	
Table (25)	Comparison between cases with left, right	82
Table (25)	and biventricular enlargement regarding	84
	LVEDD, LVFS and LV-MPI	
T 11 (26)	Correlation between vital signs and	02
Table (26)	growth parameters in the studied cases	83
	and tricuspid S', E', A' and TAPSE	
	Comparison between cases with and	
Table (27)	without hepatomegaly regarding	84
	tricuspid S', E', A', RV-MPI and TAPSE	
	Comparison between cases with and	
Table (28)	without lower limb edema regarding	85
	tricuspid S', E', A', RV-MPI and TAPSE	
	Comparison between cases with and	
Table (29)	without pulmonary congestion regarding	85
	tricuspid S', E', A', RV-MPI and TAPSE	
	Comparison between cases with left, right	
Table (30)	and biventricular enlargement regarding	86
	tricuspid S', E', A', RV-MPI and TAPSE	
	Comparison between cases with and	
Table (31)	without LBBB regarding tricuspid S', E',	86
	A', RV-MPI and TAPSE	
	Comparison between cases with and	
Table (32)	without left axis deviation regarding	87
	tricuspid S', E', A', RV-MPI and TAPSE	

Introduction

Cardiomyopathy is a genetically and clinically heterogeneous disease of the myocardium that causes systolic and/or diastolic dysfunction. In affected individuals, pediatric cardiomyopathy has severe consequences with up to 40% of children progressing to death or transplant within five years of diagnosis (*Colan et al.*, 2007).

Cardiomyopathy can be classified into five clinical phenotypes: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), left ventricular non-compaction cardiomyopathy (LVNC) and arrhythmogenic right ventricular cardiomyopathy (ARVC) (*Kindel et al., 2012*).

Dilated cardiomyopathy is the most common form of cardiomyopathy in children and its idiopathic type constitutes the majority of children with this disease. The incidence of dilated cardiomyopathy in children is 0.57 in 100,000 (*Towbin et al.*, 2006).

In children, idiopathic myocarditis and neuromuscular diseases are the most common etiologies of dilated cardiomyopathy, and generally occur during the first year of life (*Hulot et al.*, 2004).

The prevalence of right ventricular dysfunction in idiopathic dilated cardiomyopathy is incompletely studied in children. Furthermore, right ventricular function may signal worse outcomes (*Groner et al.*, 2012).

Although cardiomyopathies may be asymptomatic in the early stages, most symptoms are typical of those seen in any type of heart failure, whether systolic (reduced ejection fraction) or diastolic (preserved ejection fraction) (*Wexler et al.*, 2009).

Echocardiography plays an essential role in evaluation of left and right ventricular functions. Over the past decade, the diagnostic armamentarium was fortified by tissue Doppler imaging (TDI) (*Nagueh*, 2008).

Dilated cardiomyopathy is not purely a disease of the left ventricle. Right ventricular systolic and diastolic functions are impaired almost universally in children with idiopathic dilated cardiomyopathy. A number of studies have examined left ventricular systolic function and size in the setting of idiopathic dilated cardiomyopathy; nevertheless, the right ventricle remains difficult to interpret secondary to its unique morphology (*Groner et al.*, 2012).

Recent published guidelines suggest an important role of tissue Doppler for right ventricular functional assessments in all patients (*Jurcut et al.*, 2010).

The most important advantage of TDI in assessing right ventricular function is that measurement is independent of geometric assumptions and endocardial border tracing, it also minimizes the effect of preload and afterload on measurement (*Wong et al., 2006*) because this new modality provides quantitave measure of regional function, it may be more sensitive for detecting subclinical right ventricular abnormalities (*Coghlan and Davar, 2008*).

Aim of the work

The aim of our work is to assess right ventricular systolic and diastolic function in dilated cardiomyopathy using tissue Doppler echocardiography and to detect how much the right ventricular function impairment is correlated with the left ventricular function using tissue Doppler echocardiography.

Overview of Dilated Cardiomyopathy

Introduction:

Dilated cardiomyopathy (DCM) is a myocardial disorder characterized by a dilated left ventricular (LV) chamber and systolic dysfunction that commonly results in congestive heart failure (CHF) (*Maron et al.*, 2006). In some cases, right ventricular dysfunction (RVD) is also noted and may add to the clinical severity of disease (*Harmon et al.*, 2005).

Cardiomyopathy (CMP) is a common cause of heart failure in children and the most common indication for heart transplantation in children older than 1 year (*Wilkinson et al.*, 2010).

According to the United States (US) Pediatric Cardiomyopathy Registry, the annual incidence of CMP was 1.13 per 100,000 children younger than 18 years (*Lipshultz et al.*, *2003*) with DCM as the most common (58%), followed by HCM (30%). There were relatively few cases of RCM (5%) and arrhythmogenic right ventricular cardiomyopathy (ARVC) (5%).

The incidence of CMP in children was 1.24 per 100,000 children younger than 10 years in Australia (*Nugent et al.*, 2003).

The incidence of pure DCM in childhood in two regions in the Middle East area (Kuwait and Egypt) was 0.07 cases/ 100,000/year. The incidence was higher in males than in females (60 and 40% respectively) (*Elkilany et al.*, 2008).

DCM is the most common form of CMP worldwide and has many causes. In 30% to 48% of patients, DCM is genetically inherited. Moreover, inflammatory disorders such as myocarditis, or toxic agents