# Advances in Surgical Correction of Presbyopia

Essay
Submitted for partial fulfillment of the M.Sc. degree in
Ophthalmology

By

Ayman Ahmad Hassan Ahmad Rashed M.B., B.Ch.

Supervised By

#### Dr.Mohsen Emad Eldeen Salem

Professor of Ophthalmology
Faculty of Medicine, Cairo University.

#### **Dr. Mohamed Hassan Hosny**

Assistant Professor of Ophthalmology Faculty of Medicine, Cairo University

### **Dr. Mohamed Amin Zayed**

Lecturer of Ophthalmology
Faculty of Medicine, Cairo University.

Cairo, 2007

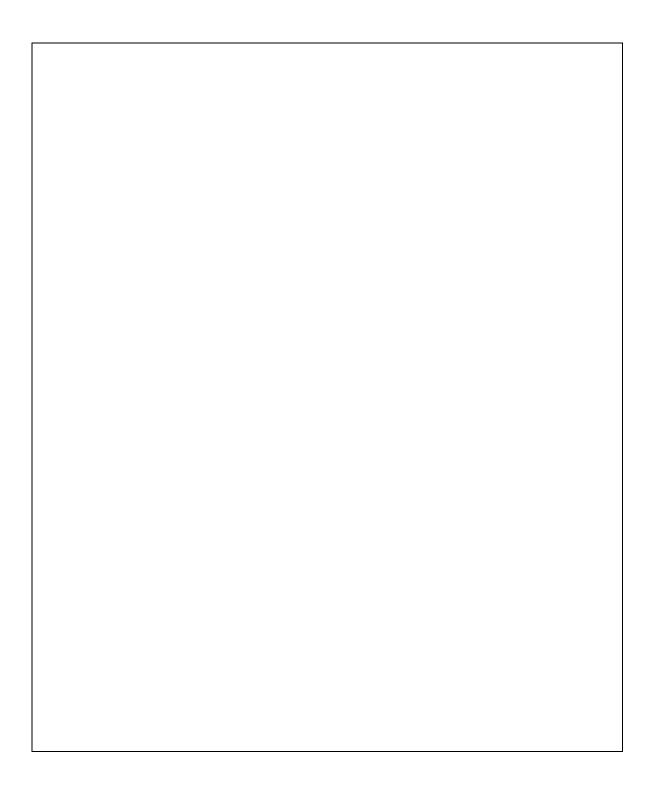
# To My Father

# Acknowledgements

In the beginning ,I thank Allah the most merciful, the almighty.

I would first like to thank my loving family for their continuous support.

I would like to thank Prof. Dr.Mohsen Salem for his tremendous support, Dr Mohamed Hosny for his ongoing encourangement, and Dr. Mohamed Zayed for his great patience and cooperation.


I would also like to thank many of my colleagues who helped me achieve this work.

# **List of Figures**

| Fig.1  | Anteroposterior section of the ciliary body                   | 3  |
|--------|---------------------------------------------------------------|----|
| Fig.2  | Drawing of the ciliary body showing the ciliary muscle        | 4  |
| Fig.3  | Tension fibers and zonular fork.                              | 7  |
| Fig.4  | Helmholtz theory of accommodation                             | 9  |
| Fig.5  | Schachar theory of accommodation                              | 11 |
| Fig.6  | The reflections in the center of Mylar balloon                | 11 |
| Fig.7  | Location of segment optical centers                           | 20 |
| Fig.8  | The executive one piece straight                              | 20 |
| Fig.9  | Diagrams of hard bifocal contact lenses                       | 25 |
| Fig.10 | Soft bifocal contact lens                                     | 26 |
| Fig.11 | Schachar scleral implants                                     | 30 |
| Fig.12 | External configuration of Schachar scleral implants           | 30 |
| Fig.13 | Steps of scleral expansion band surgery                       | 34 |
| Fig.14 | Radial incisions increase the circumference over ciliary body | 37 |
| Fig.15 | The effect of ACS                                             | 38 |
| Fig.16 | Anterior ciliary sclerotomy with Silicone Expansion Plug      | 40 |
| Fig.17 | Diagram of placement of hydrogel inlay lens in cornea         | 48 |

| Fig.18 | Multifocal cornea concept lens concept lens for distance                    | 49 |
|--------|-----------------------------------------------------------------------------|----|
| Fig.19 | Multifocal cornea for near                                                  | 49 |
| Fig.20 | Diagram of the small-diameter corneal inlay                                 | 50 |
| Fig.21 | The Biovision system with its specially designed microkeratome              | 51 |
| Fig.22 | Myopic and hyperopic ablation                                               | 62 |
| Fig.23 | Corneal topography of a patient treated with presbylasik (before treatment) | 64 |
| Fig.24 | Corneal topography of a patient treated with presbylasik (after treatment)  | 64 |
| Fig.25 | Table showing results of Guillermo's study                                  | 65 |
| Fig.26 | Principle of iris registration in multifocal ablations                      | 67 |
| Fig.27 | Non contact Ho: YAG LTK                                                     | 70 |
| Fig.28 | Ring pattern around the visual axis by CK                                   | 72 |
| Fig.29 | Steepening of the central cornea by CK                                      | 72 |
| Fig.30 | The viewpoint CK system                                                     | 75 |
| Fig.31 | Nomograms and spot sequence used for CK                                     | 75 |
| Fig.32 | Diffractive multifocal IOL                                                  | 79 |
| Fig.33 | Optics of the refractive array multifocal IOL                               | 81 |
| Fig.34 | The array multifocal IOL                                                    | 81 |
| Fig.35 | The Acrysof ReSTOR IOL                                                      | 83 |
| Fig.36 | The ReZoom IOL                                                              | 85 |
| Fig.37 | The crystalens                                                              | 88 |

| Fig.38 The Human optics akkomadative 1CU  | 89 |
|-------------------------------------------|----|
| Fig.39 The 1CU lens in the capsular bag   | 90 |
| Fig.40 Near objects focused on the retina | 91 |
| Fig.41 Far objects focused on the retina  | 91 |
| Fig.42 Visiogen Synchrony IOL             | 93 |
| Fig.43 The presbyopic phakic IOL          | 95 |
| Fig.44 Folding of the IOL                 | 96 |
| Fig.45 The vaulted design of the Vision   | 98 |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |
|                                           |    |



# **LIST OF CONTENTS**

| ♣ Introduction                                                                                                                                                           | 1                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <ul> <li>Chapter I-Anatomical considerations</li> <li>The ciliary body</li> <li>The crystalline lens</li> <li>Suspensory ligament of the lens</li> </ul>                 | 3<br>3<br>5<br>6     |
| 4 Chapter II- Presbyopia and accommodation                                                                                                                               | 8                    |
| <ul> <li>Chapter III-Non-surgical methods</li> <li>Spectacles</li> <li>Contact lenses</li> </ul>                                                                         | 16<br>16<br>22       |
| <ul> <li>Chapter IV-Scleral surgery for presbyopia</li> <li>Scleral expansion bands</li> <li>Anterior ciliary sclerotomy</li> <li>Advances in scleral surgery</li> </ul> | 28<br>29<br>36<br>41 |
| <ul> <li>Chapter V-Corneal surgery :old and new</li> <li>Small diameter intracorneal inlay lens</li> <li>Monovision</li> <li>Multifocal cornea</li> </ul>                | 47<br>47<br>52<br>56 |
| Chapter VI-IOLs: a new perspective Multifocals                                                                                                                           | 78<br>78             |
| ❖ Accommodative IOLs                                                                                                                                                     | 87                   |
| Presbyopic phakic IOLs                                                                                                                                                   | 94                   |
| Summary                                                                                                                                                                  | 101                  |
| References                                                                                                                                                               | 102                  |
| Arabic summary                                                                                                                                                           |                      |

#### **LIST OF ABBREVIATIONS**

**ACS:** Anterior ciliary sclerotomy

**BCVA:** Best corrected visual acuity

**BSCVA:** Best single uncorrected visual acuity

**CK:** Conductive Keratoplasty

**D:** Dioptres

**IOL**: Intraocular lens

**LASIK**: Laser assisted in situ keratomilueisis

LTK: Laser Thermal Keratoplasty

**MRSE**: Mean Refractive Spherical Equivalent

**NRA:** Negative Relative Accommodation

**Prelex**: Presbyopic Lens Exchamge

**PRA:** Positive relative accommodation

**PRK**: Photorefractive Keratectomy

**RK**: Radial Keratectomy

**RTK**: Radial Thermokeratoplasty

**SEB**: Scleral Expansion Band

**SEP**: Scleral Expansion Plug

**UBM**: Ultrasound Biomicroscopy

**UCVA**: Uncorrected Visual Acuity

#### **INTRODUCTION**

*Presbyopia*, derived from the Greek words (*Presbys=aged person*) and (*Opsis=vision*), is a gradual age-related loss of accommodative ability of the eye.

Accommodation is a diopter change in power of the eye to allow near objects to be focused on the retina. Accommodative loss begins early in life. Objective measurements show 2-3 diopters loss per decade, resulting in complete loss of accommodation by 50.8 years.

Many theories were made to explain accommodation, most important were two. *Helmholtz* postulated in 1855 that contraction of the circular ciliary muscle produces relaxation of the zonules, which reduces the tension on the zonules, allows the lens to increase in its convexity. With progression of age, the ability of the lens to do this is lost (Ellis W, 2000). *Schachar*, on the other hand, suggested in 1992 that the longitudinal muscle fibers contract during accommodation, placing more tension on the equatorial zonules, while relaxing the anterior and posterior zonules. Presbyopia occurs when lens diameter reaches a critical size, resting tension on zonules reduced, so when ciliary muscle contracts, insufficient tension is generated on equatorial zonules to affect change in lens power (Schachar RA, 1992).

The conventional non surgical methods for correction of this physiological condition include: spectacles, with their special addition determinants (Newman, 1998), and contact lenses with their variable soft and rigid types(Mackie, 1993).