SERUM HEPCIDIN LEVEL AND IRON PROFILE IN OBESE PATIENTS WITH NON ALCOHOLIC FATTY LIVER DISEASE

Thesis

Submitted For partial fulfillment of Master Degree in Internal Medicine

Bγ **Mohammed Mokhtar Abdel-Hakim** *M.B.B.Ch.*

Supervised By

Prof. Dr. Tarek Maged Elsakaty

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Dr. Sherief Sadek Shabana

Assistant Professor of Internal Medicine Faculty of Medicine Ain Shams University

Dr. Hany Haroun Kaisar

Assistant Professor of Internal Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Tarek Maged Elsakaty**, Professor of Internal Medicine - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Sherief Sadek** Shabana, Assistant **Professor** ofInternal Faculty of Medicine, Medicine. AinShams University, for hiskind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Hany Haroun Kaisar**, Assistant Professor of Internal
Medicine, Faculty of Medicine, Ain Shams
University, for his great help, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohammed Mokhtar Abdel-Hakim

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Nonalcoholic Fatty Liver Disease	4
Hepcidin and Iron Profile	45
Subjects and Methods	
Results	79
Discussion	94
Summary	106
Conclusion and Recommendations	109
References	110
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1):	NASH CRN NAFLD activity scor	
Table (2):	Symptoms, Signs, and Labora Features of Nonalcoholic Fatty L Disease	iver
Table (3):	Hepcidin and iron disorders	
Table (4):	Comparison between control group patients group regarding gender	and
Table (5):	age of the studied patients	and
Table (6):	measures	81 and
Table (7):	albumin	83
Table (8):	patients group regarding lipid profile Comparison between control group patients group regarding iron, ferr	e 85 and
	TIBC, transferrin saturation hepcidin level	87
Table (9):	Correlation of hepcidin with the or studied parameters in Patient group	88
Table (10):	Correlation of iron and ferritin le with the other studied parameters	
Table (11):	patient group	rrin
	parameters in patient group	91

List of Figures

Fig. No.	Title	Page No.
T (1)	Dl. (1.
Figure (1):	Photomicrograph of liver in a 34 years in showing features of N.	
	(steatosis+ballooned hepatocytes)	12
Figure (2):	Photomicrographs of liver in a 34 y	
	male showing features of NASH (stea	tosis
	with ballooned hepatocytes, a focus of	mild
	lobular lymphocytic infiltrate in (A) and	
	glycocylated nuclei in (B)	
Figure (3):	Two-hit hypothesis of nonalcoholic	
	liver disease	
Figure (4):	Interplay among environmental and ger	
	factors in the development of nonalcol	
E' (5)	fatty liver disease.	
Figure (5):	Proposed pathogenesis of nonalcol	
	steatohepatitis integrating obesity	
	insulin resistance with bile	
	metabolism, lipotoxicity, autoph endoplasmic reticulum stress, apopt	
	and hepatic progenitor cell transforma	·
	and stellate cell activation resulting	
	hepatic steatosis, necroinflammation,	
	fibrosis	
Figure (6):	Overview of iron trafficking and regulat	
Figure (7):	Hepcidin interaction with ferrope	
3 . ,	controls the main iron flows into plasma	
Figure (8):	A current model of regulation of hepo	
	transcription by iron	58
Figure (9):	Clinical conditions known to influ	ence
	circulating hepcidin levels	67
Figure (10):	Gender distribution in NAFLD group	79
Figure (11):	Comparison between control group	
	patients group regarding gender	
Figure (12):	Comparison between control group	
	patients group regarding age	
Figure (13):	Comparison between control group	
	Patients group regarding height	81

List of Figures (Cont...)

Fig. No.	Title P	age No.
Figure (14):	Comparison between control group an	
	patients group regarding weight	
Figure (15):	Comparison between control group ar	nd
	patients group regarding BMI.	82
Figure (16):	Comparison between control group ar	nd
	patients group regarding ALT level	84
Figure (17):	Comparison between control group ar	nd
	patients group regarding AST level	84
Figure (18):	Comparison between control group ar	
3	patients group regarding Triglycerides lev	
Figure (19):	Comparison between control group ar	
8 , ,	patients group regarding LDL level	
Figure (20):	Comparison between control group ar	
8 (- /	patients group regarding Cholesterol level	
Figure (21):	Comparison between control group ar	
g ()	patients group regarding Hepcidin level	
Figure (22):	Correlation between Hepcidin level ar	
118410 (==).	Weight	
Figure (23):	Correlation between iron level and age	
Figure (24):	Correlation between Ferritin level ar	
11guit (24).	Triglycerides Level	90
Figure (25):	Correlation between Transferrin saturation	
Figure (20).	and Height	91
Figure (26):	Correlation between Transferrin saturation	
rigure (20):	and Weight	92
Figure (97).	Correlation between Transferrin saturation	
Figure (27):	Correlation between Transferrin Saturation	J11
	and RMI	വാ
Figure (28):	and BMI Receiver operating characteristic cur	92

List of Abbreviations

Abb.	Full term
AA	Amino acids
	American Association for the Study of Liver Diseases
ACG	American College of Gastroenterology
AI	Anemia of inflammation
ALT	Alanine transaminase
ANA	Antinuclear antibodies
ApoB	Apolipoprotein B
APOC3	Apoprotein C3
APRI	AST/Platelets ratio index
ARBs	Angiotensin receptor blockers
ARFI	Acoustic radiation force impulse imaging
AST	Aspartate transaminase
BARD	BMI, AST/ALT ratio, DM score
Bax	Bcl-2-associated X protein;
BM	Bone marrow
BMI	Body mass index
CAP	Controlled attenuation parameters
CCHREBP	Carbohydrate-responsive element binding
	protein
CK-18	Cytokeratin 18
CP	Ceruloplasmin
CRN	Clinical research network
CSI	Chemical shift imaging
CT	Computed tomography
DcytB	Duodenal cytochrome b
DIOS	Dysmetabolic iron overload syndrome
DMT-1	Divalent metal transporter-1
DNL	de novo lipogenesis

List of Abbreviations (Cont...)

Abb.	Full term
DRG	.Diagnosis related group
ELF	.Enhanced liver fibrosis panel
FDA	.Food and drugs administration
FFA	.Free fatty acids
FGF 21	.Fibroblast growth factor 21
FIB-4	.Fibrosis 4 score
FLI	.Fatty liver index
FPN	.Ferroportin
FXR	.Farsenoid X receptor
	.Glucokinase (hexokinase 4) regulator
	.Gamma-glutamyl transferase
H, E	.Hematoxylin and eosin
HCC	.Hepatocellular carcinoma
HCV	.Hepatitis C virus
HDL	.High density lipoprotein
HFE	.Hemochromatosis gene
HH	.Heridetary hemochromatosis
HJV	.Hemojuvelin
HMG-COA	.Hydroxy-3-methyl-glutaryl-coenzyme A reductase
HP	.Hepcidin
IL-6	
	Insulin resistance
	.Iron response element
	.Iron-refractory iron-deficiency anemia
	.Iron regulatory protein
	Jun N-terminal kinase

List of Abbreviations (Cont...)

Abb.	Full term
LAP	Lipid Accumulation Product
LDL	Low density lipoprotien
LEAP-1	Liver-expressed antimicrobial peptide 1
LPS	Lipopolysaccharide
LRH-1	Liver receptor homolog 1
LXR	Liver X receptor
LYPLAL1	Lysophospholipase-like1
MDB	Mallory-Denk bodies
MRE	Magnetic resonance elastography
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
NAFLD	Nonalcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis
NCAN	Gene encoding neurocan
NF-κB	Nuclear factor kappa B
NKT	Natural Killer T
OD	Optical density
PlPLA3	Patatin-like phospholipase domain containing 3
PPAR	Peroxisome proliferator-activated receptor-
	gamma
PTX	Pentoxyfilline
RBC	Red blood cell
ROS	Reactive oxygen species
RTE	Real time shear wave elastography
SFA	Saturated fatty acid
SNP	Single nucleotide polymorphism
SREPB-1	Sterol regulatory elementbinding protein 1
T2DM	Type 2 diabetes mellitus

List of Abbreviations (Cont...)

Abb.	Full term
TF	Transferrin
TfR2	Transferrin receptor 2
TG	
TGF-β	Transforming growth factor beta
	Toll-like receptor-4
TMPRSS6	Transmembrane protease, serine 6
TZD	Thiazolidinediones
U. S	United States
UDCA	Ursodeoxycholic acid
UPR	Unfolded protein response
USG	Ultrasonography
VAT	Visceral adipose tissue
VLDL	Very low-density lipoprotein
WC	Waist circumference
WHR	Waist to Hip ratio

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) describes a spectrum of liver clinico pathological changes extending from simple steatosis through non-alcoholic steatohepatitis (NASH) to fibrosis (Farrell and Larter, 2006).

It is the most common cause of chronic liver injury worldwide. It has been documented in 10 to 15 percent of normal individuals and 70 to 80 percent of obese individuals (Bellentani et al., 2000). NAFLD has doubled during last 20 years and it is the leading cause of liver disease in the western countries, but recent data confirmed that NAFLD play an equally important role worldwide (LaBrecque et al., 2014).

It was initially believed that NAFLD is a completely benign disorder; but histological follow-up studies showed that progression to fibrosis occurs in about one third of patients (Bellentani et al., 2000). On the other hand, approximately 7% of patients with NASH will progress to cirrhosis within 3 years (Wong et al., 2010). It is currently the third most common cause of liver transplantation and is projected to be the leading cause in 2020 (McCullough, 2011).

In addition, several prospective studies showed that NASH is independently associated with increased mortality, from both liver disease-related and cardiovascular causes (Ekstedt et al., 2006).

Liver biopsy remains the golden standard for the diagnosis of NAFLD and for distinguishing simple steatosis from NASH. However, biopsy is an invasive method carrying a small but not negligible risk of Complications (Myers et al., 2008). So ultrasonography is accepted as an initial screening for fatty liver because it is noninvasive, inexpensive, and widely available (Palmentieri et al., 2006). A Japanese study conducted on the general population shows that ultrasound scanning has a sensitivity of 94% and a specificity of 84% for detecting liver steatosis (Angulo et al., 2007).

In addition, it has been shown that adipose tissue expresses hepcidin, a key regulator of iron homeostasis, and this expression is enhanced in massively obese patients with NAFLD (Bekri et al., 2006).

The liver has important role in the regulation of iron homeostasis. Primarily, it is one of the major storage sites of iron. Additionally, it produces transferrin, iron carrier glycoprotein in the plasma and hepcidin, the key hormone regulating the systemic iron homeostasis (Park et al., 2001).

Hepcidin controls plasma iron concentration and tissue distribution of iron by inhibiting intestinal and macrophage iron efflux. Iron per se has also been shown to modulate hepcidin levels, thus hepcidin is now considered as the iron regulatory hormone (Kemna et al., 2007).

AIM OF THE WORK

The aim of the work is to assess serum hepcidin level and iron profile in obese patient with NASH and compare the results with normal age and sex matched individuals.

Chapter 1

Nonalcoholic Fatty Liver Disease

Introduction

Nonalcoholic fatty liver disease (NAFLD) is describes a spectrum of liver clinico pathological changes extending from simple steatosis through non-alcoholic steatohepatitis (NASH) to fibrosis and is defined strictly as fat accumulation of >5% of the liver weight on histology. However, in clinical practice and for epidemiological reasons, it is the presence of fatty liver at ultrasonography (USG) in the absence of known secondary causes of fatty liver (*Farrell and Larter*, 2006).

It is the most common cause of chronic liver injury worldwide; it has been documented in 10 to 15 percent of normal individuals and 70 to 80 percent of obese individuals (*Bellentani et al.*, 2000).

The prevalence of NAFLD has doubled during last 20 years and it is the leading cause of liver disease in the western countries, but recent data confirmed that NAFLD play an equally important role worldwide and it is the third most common risk factor for HCC after viral infection and alcohol (*LaBrecque et al.*, 2014).