

HIGH ACCURACY GPS-FREE VEHICLE LOCALIZATION FRAMEWORK VIA A SINGLE RSU

By

Ahmed Abdel Wahab Mohamed El Marady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

HIGH ACCURACY GPS-FREE VEHICLE LOCALIZATION FRAMEWORK VIA A SINGLE RSU

By

Ahmed Abdel Wahab Mohamed El Marady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Dr. Yasmine Aly Hassan Fahmy

Dr. Ahmed Khattab Fathi Khattab

Associate Professor

Assistant Professor

Electronics and Communications Engineering Department

Electronics and Communications department
Faculty of Engineering , Cairo University

Faculty of Engineering , Cairo University

FACULTY OF ENGINEERING , CAIRO UNIVERSITY GIZA, EGYPT 2015

HIGH ACCURACY GPS-FREE VEHICLE LOCALIZATION FRAMEWORK VIA A SINGLE RSU

By

Ahmed Abdel Wahab Mohamed El Marady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Dr. Yasmine Aly Hassan Fahmy, Thesis Main Advisor

Prof. Hebat-Allah Mostafa Mourad, Internal Examiner

Dr. Ahmed Hasan Kamel Aly Madian, External Examiner (Associate Professor at German University in Cairo)

FACULTY OF ENGINEERING , CAIRO UNIVERSITY GIZA, EGYPT 2015

Engineer's Name: Ahmed Abdel Wahab Mohamed El Marady

Date of Birth: 25/5/1985 **Nationality:** Egyptian

E-mail: ahmed.abdel-wahab@civilaviation.com.eg,

ahmed abdel wahab 02@yahoo.com

Phone: +2 01144007328

Address: Shoubra El-Khima, Qalyubia

Registration Date: 1/10/2011 **Awarding Date:** 00/00/2015

Degree: Master of Science

Department: Electronics and Communications Engineer-

ing

Supervisors:

Dr. Yasmine Aly Hassan Fahmy Dr. Ahmed Khattab Fathi Khattab

Examiners:

Dr. Yasmine Aly Hassan Fahmy (Thesis main advisor)
Prof. Hebat-Allah Mostafa Mourad (Internal examiner)
Dr. Ahmed Hasan Kamel Aly Madian (External examiner)

(Associate Professor at German University in Cairo)

Title of Thesis:

High Accuracy GPS-Free Vehicle Localization Framework via a Single RSU

Key Words:

Roadside unit; Dead reckoning; Inertial navigation system; Dedicated short-range communication (DSRC); Vehicular ad-hoc network (VANET); Kalman filter.

Summary:

This thesis presents a high accuracy GPS-free vehicle localization framework to be used in collision avoidance applications. In contrast to the error-prone existing localization techniques, the approach proposed in this thesis determines the vehicle location, up to lane-level accuracy via a single Road Side Unit (RSU). By using one RSU, the cost of the localization system installation is reduced. The suggested framework integrates the information from the local Inertial Navigation System (INS) and a single RSU via Kalman and extended Kalman filters.

Acknowledgements

Firstly, I thank God for guiding me to finish this work.

Secondly, I would like to express my gratitude to my supervisors Dr. Ahmed Khattab and Dr. Yasmine Fahmy for the useful guidance, comments, remarks and engagement through the learning duration of this master thesis.

Finally, I would like to thank my superiors at work Eng. Said Jouban and Mr. Hesham El Gammal for motivating and helping me through their working time.

Dedication

To my mother, my father and my wife.

Table of Contents

Li	st of '	Tables	iii
Li	st of l	Figures	iv
Li	st of A	Abbreviations and Symbols	vi
A	cknov	vledgements	X
De	edicat	ion	xi
Al	ostrac	et ·	xii
1	Intr	oduction	1
	1.1	Research Motivation	1
	1.2	Thesis Contributions	2
	1.3	Thesis Outline	3
2		kground	5
	2.1	Characteristics of VANET	5
	2.2	Applications of VANET	
	2.3	Challenges and Open-Research Areas in VANET	8
	2.4	Basics of DSRC	9
	2.5	IEEE 802.11 MAC	
		2.5.1 Basics of IEEE 802.11 MAC	
		2.5.2 RTS / CTS handshake	14 16
		2.3.5 Network Anocation vector. Virtual Carrier Sense	10
3	Lite	rature Review	17
	3.1	Absolute Positioning Techniques	
		3.1.1 GPS-based Absolute Positioning Techniques	
		3.1.2 GPS-Free Absolute Positioning Techniques	
	3.2	Relative Positioning Techniques	
		3.2.1 GPS-Based Relative Positioning Techniques	
	2.2	3.2.2 GPS-Free Relative Positioning Techniques	
	3.3	Lane-Level Positioning Techniques	
		3.3.1 Vision-Based Lane-Level Positioning Techniques3.3.2 Vision-Free Lane-Level Positioning Techniques	24
	2 1		24 25
	3.4	Chapter Summary	23
4		-RSU-Based Framework for GPS-Free Vehicle Localization	26
	4.1 4.2	Introduction	26 27
	4.2	System Model	27
	+. J	4.3.1 Determining the Vehicle Driving Direction	27

		4.3.2	Vehicle Localization	30
			4.3.2.1 Localization via V2R Communication for Distant Vehicles	35
			4.3.2.2 Localization via Dead Reckoning for Nearby Vehicles .	36
	4.4	Simula	ation	40
		4.4.1	Simulations Environment	40
		4.4.2	Modified Random Waypoint Mobility Pattern Generator	40
		4.4.3	Metrics used	41
		4.4.4	Results	41
			4.4.4.1 Localization Accuracy	42
		~	4.4.4.2 Performance Under Different Mobility Patterns	44
	4.5	Summ	ary	44
5			d Single RSU Framework for GPS-Free Vehicle Localization	46
	5.1		action	46
	5.2	•	1 Model	47
	5.3		NS Integration for Vehicle Localization	49
		5.3.1	Kalman and Extended Kalman Filters Preliminaries	50
		5.3.2	One-Dimensional Kalman Filter for Locating Distant Vehicles	52
		5.3.3	Two-Dimensional Extended Kalman Filter for Locating Nearby	
			Vehicles	
	5.4		Lane Boundary Adjustment Stage	58
	5.5		work Integration	61
	5.6	Summ	ary	62
6	Sim	ulations	;	63
	6.1		ations Environment	63
	6.2	Metric	s used	
	6.3	Results	S	64
		6.3.1	Localization Accuracy	64
			6.3.1.1 Localization Accuracy along the Road Length	
			6.3.1.2 Localization Accuracy along both Road Dimensions	
			Impact of Measurement Errors	
		6.3.3	Performance Under Different Mobility Patterns	
		6.3.4	Impact of Traffic Density	73
7	Con	clusion	and Future Research Directions	74
	7.1	Conclu		74
	7.2	Contri	butions	74
	7.3	Future	Research Directions	75
Re	eferen	ices		77
Αŗ	pend	lix A E	Examples of VANET Projects	81
Αr	nend	lix B D	Perivations of the Kalman Filter Equations	82

List of Tables

	Summary and classifications of some important applications of VANET Summary of the main differences between the two US DSRC generations	7
2.3	[1]	
4.1	Summary of simulation parameters	
6.1	Simulation parameters	64
A.1	Examples of VANET projects	81

List of Figures

2.1	Illustration of VANET architecture	10
2.2	The frequencies of various channels in DSRC [1]	
2.3	The increment of contention window (CW) with retires	13
2.4	Hidden station problem	13
2.5	Exposed station problem	14
2.6	RTS/CTS/Data/ACK timeline	15
2.7	Virtual channel sensing using CSMA/CA	16
3.1	Illustration of various positioning techniques	18
3.2	Illustration of RF-GPS technique	
3.3	The architecture of GPS/SBAS	
3.4	The concept of Assisted-GPS technique	
3.5	Illustration of RSU-based localization technique	22
3.6	System overview of DSRC/radar sensors localization technique	23
4.1	Illustration of the system model	28
4.2	The proposed One-RSU-Based localization framework	29
4.3	Illustration of vehicle driving direction determination technique	31
4.4	Illustration of the concept of range-based localization technique	32
4.5	Illustration of the threshold area	33
4.6	Illustration of scenario where three vehicle travelling one in each lane of	
	three lanes single carriageway road without changing lane	34
4.7	The impact of curvature error	35
4.8	The timeline of the proposed two-way TOA packet handshake	37
4.9	Range estimation using two-way TOA	37
4.10	Dead Reckoning vehicle kinematics	38
4.11	Flow chart of the localization stage	39
	Accuracy of y-location \bar{y}_k of our framework	42
4.13	The vehicle localization accuracy of vehicle moving in the first, second	
	and third lane	43
5.1	The proposed GPS-free integrated framework for vehicle localization	
	using a single RSU and INS information	48
5.2	Illustration of the system model assumed in the proposed INS-Assisted	
	Single RSU framework	49
5.3	An illustration of the various fusion techniques used along the road. Vehi-	
	cles V_1 and V_2 are inside and outside the threshold area, respectively	51
5.4	INS vehicle Kinematics	52
5.5	The impact of curvature error	54
5.6	The one-dimensional discrete Kalman Filter cycle	55
5.7	The two-dimensional discrete extended Kalman Filter cycle	57
5.8	Illustration of Road/Lane boundaries for single carriageway road with	
	three lanes.	59

6.1	A course of a location a of our framework	65
6.1	Accuracy of y-location \hat{y}_k of our framework	
6.2	Accuracy of vehicle-location in both x and y dimensions	66
6.3	The impact of the range measurement error on \hat{y}_k , $\tilde{\varphi}_k$, and \tilde{x}_k	67
6.4	The vehicle localization accuracy of vehicle moving in the first lane ($x=1.5$	
	m)	69
6.5	The vehicle localization accuracy of vehicle moving in the third lane	
	(x=7.5 m)	70
6.6	The vehicle localization accuracy of vehicle moving in the second lane	
	(x=4.5 m)	71
6.7	The vehicle localization accuracy of a vehicle moving in a random pattern.	72
6.8	The impact of traffic density.	73
	-	

List of Abbreviations and Symbols

List of Abbreviations

ACC Adaptive Cruise Control

ACK Acknowledge

A-GPS Assisted–Global Positioning System

AIFS Arbitration Inter-frame Space

AoA Angle of Arrival AP Access Point

ARIB Association of Radio Industries and Businesses
ASTM American Society for Testing and Materials

CWS Collision Warning Systems
CCW Cooperative collision warning

CCH Control Channel

CEN European Committee for Standardization

CW Contention Window

CSMA/CA Carrier Sense Multiple Access/ Collision Avoidance

CTS Clear-to-Send

DCF Distributed Coordination Function
D-GPS Differential-Global Positioning System

DIFS DCF Inter Frame Space

DR Dead Reckoning

DSRC Dedicated Short–Range Communication

EDCA Enhanced Distributed Channel Access Function

EKF Extended Kalman Filter

EIFS Extended IFS

ETC Electronic Toll Collection

FCC Federal Communications Commission
GBAS Ground–Based Augmentation System
GCT Grid based On model against in ground to a selection.

GOT Grid-based On-road localization

GEO Geostationary

GPS Global Positioning System

HCCA Hybrid Controlled Channel Access

IFS Interframe Space

INS Inertial Navigation System

IVCAL Inter-Vehicle-Communication-Assisted Localiza-

tion

ITS Intelligent Transportation Systems

KF Kalman Filter LOS Line of Sight

MAC Media Access Control MANET Mobile Ad-Hoc Networks MCC Mission Control Centers
MSC Mobile Switching Center
NAV Network Allocation Vector

NHTSA National Highway Traffic Safety Administration

NLOS Non Line of Sight

NLES Navigation Land Earth Stations

OBU Onboard Unit

PCF Point Coordination Function

PHY Physical

QoS Quality of Service

RIMS Ranging and Integrity Monitoring Stations

RFID Radio Frequency Identification

RF-GPS Radio-Frequency-GPS RMSE Root-Mean-Square Error

RSU Roadside Unit RTS Request—to—Send

RSS Received Signal Strength

RTT Round-Trip Time

SBAS Satellite–Based Augmentation System

SCH Service Channel

SIFS Short Inter-Frame Space
TDOA Time Difference of Arrival

TOA Time of Arrival TTFF Time-To-First Fix

VANET Vehicular Ad-hoc Networks

V2V Vehicle-to-Vehicle V2R Vehicle-to-Roadside

WAVE Wireless Access in Vehicular Environments

WLAN Wireless Local Area Network WSN Wireless Sensor Network

List of Symbols

A, B	Control matrices
C	Speed of light $=3 \times 10^8$
CLT	Change-lane-threshold
CW_{min}	Minimum contention window
CW_{max}	Maximum contention window
EMA_K	Exponential weighted moving average
	Curvature noise which reflects the lane-level ambi-
$oldsymbol{arepsilon}_k$	
G-	guity Valman gain used in one dimensional Valman filter
g_k	Kalman gain used in one-dimensional Kalman filter
\underline{g}_k	2x1 Kalman gain used in two-dimensional extended Kalman filter
$h(\cdot)$	Non-linear function used to compute the predicted
	single-value measurement, $R_{V,RS,U}$
\underline{h}_k	1x2 Jacobian vector of the partial derivatives of
— К	h(arphi)
I	$2x\overline{2}$ unit matrix
L	Length of the road
L_{RSU}	y-coordinate of the RSU
L_i and L_{i-1}	The boundaries of lanei
MA_K	Moving average
M	Number of prior observations of $\tilde{x_k}$
N	North road driving direction
n_r	Noise comes from range estimation, R_{VRSU}
θ	Drift angle
p_k	Posteriori estimate error variance
p_k^-	Priori estimate error variance
$\stackrel{r}{P_k}$	2x2 posteriori estimate error covariance matrix
P_{k}^{-}	2x2 priori estimate error covariance matrix
$Q^{^{k}}$	2x2 covariance matrix of the process noise
$\tilde{R}_{V,RSU}$	Estimated range between vehicle and RSU at time
V,105 O	t_2
$R'_{V,RSU}$	Estimated range between vehicle and RSU at time
TV,RS U	t_1
$RMSE_{x}$	Root-mean-square error of vehicle location inx di-
111122_{χ}	mension
$RMSE_{v}$	Root-mean-square error of vehicle location iny di-
11112 = y	mension
S	South road driving direction
T	Time interval
τ	Time delay experienced at the RSU
\underline{u}_k	2x1 vector that represent vehicle velocity compo-
<i>-</i> ,	nents in the x and y directions
ν	Vehicle speed
v_{min}	Minimum vehicle speed
	•

v_{max}	Maximum vehicle speed
W	Width of the road
\underline{w}_k	Process noise comes from using INS
$\frac{w}{\bar{y}_k}$	Estimated vehicle location using our One-RSU-
	based approach at time t_k
\hat{y}_k	Posteriori state estimate of the vehicle location in
	y-dimension
$\hat{\mathcal{Y}}_k^-$	Priori state estimate of the vehicle location y-
K	dimension
σ_r^2	Variance
z_k	Measurement
$(x_{actual.i}, y_{actual.i})$	Real vehicle location at time instant i
ζ_k	Measurement noise
α	Weighting factor
$\hat{arphi}_{\scriptscriptstyle L}^-$	2x1 priori state estimate of the vehicle location
$rac{\hat{arphi}_k^-}{\hat{arphi}_k}$	2x1 posteriori state estimate of the vehicle location