

Faculty of Science Chemistry Department

Chemical studies on the separation and determination of some lanthanides from their economic concentrates

Thesis Submitted for Ph.D. Degree of Science in Chemistry

By

Ekramy Mohamed El- Desouky (M. Sc. 2008)

Assistant lecturer-Nuclear Materials Authority

To
Chemistry Department
Faculty of Science
Ain Shams University
Cairo, Egypt

Faculty of Science Chemistry Department

Chemical studies on the separation and determination of some lanthanides from their economic concentrates

Thesis Submitted for Ph.D. Degree of Science in Chemistry

By
Ekramy Mohamed El- Desouky
(M. Sc. 2008)

To

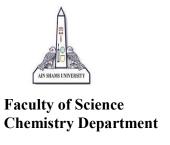
Chemistry Department-Faculty of Science
Ain Shams University

Supervised by

Prof. Dr. Salah A. Abo-El-Enein

Prof. of Physical Chemistry
Faculty of Science-Ain Shams University

Prof. Dr. Hisham K. Fouad


Prof. of Analytical Chemistry Nuclear Materials Authority, Cairo

Dr. Nasr A. Abdel-Fattah

Ass. Prof. of Analytical Chemistry Nuclear Materials Authority, Cairo

Head of Chemistry Department

Prof. Dr. Hamed Ahmed Younes Derbala 2015

Approval Sheet

Chemical studies on the separation and determination of some lanthanides from their economic concentrates

By
Ekramy Mohamed El- Desouky
(M. Sc. 2008)

This Thesis for Ph.D. Degree has been Approved by:

Prof. Dr. Mustafa M. M. Emara

Prof. of physical Chemistry, Faculty of Science, Al-Azhar University

Prof. Dr. Nadia A. M. Yousef

Prof. of Physical Chemistry, Faculty of Women, Ain Shams University

Prof. Dr. Sala A. Abo-El-Enein

Prof. of Physical Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Hisham K. Fouad

Prof. of Analytical Chemistry, Nuclear Materials Authority

CONTENTS

Acknowledgement.	i
List of Tables	ii
List of Figures	v
Abstract	vii
Aim of the work	viii
CHAPTER 1	
1. PART 1 (INTRODUCTION)	
1.1. Lanthanide elements (REEs)	1
1.1.1 Occurrence	3
1. 1.2 Separation.	3
1. 2 History of Holmium and Erbium.	4
1.3 General abundance	5
1.3.1 Holmium and Erbium – bearing minerals	7
1.3.1.1 Monazite	7
1.3.1.2 Xenotime	8
1.4 Isotopes	8
1.5 General characteristics of Holmium and Erbium.	10
1.5.1 Chemical reactions.	10
1.5.1.1 Reaction of Holmium and Erbium with air	10
1.5.1.2 Reaction of Holmium and Erbium with water	10
1.5.1.3 Reaction of Holmium and Erbium with the halogens	11
1.5.1.4 Reaction of Holmium and Erbium with acids	11
1.5.1.5 Reaction of Holmium and Erbium with Bases	12
1.6 Miscellaneous Applications of Holmium and Erbium	12
1.7 Health hazardous	14
1.8 Kojic acid.	15

PART 2(LITERATURE SURVEY)	
	17
1.10 Instrumental methods	17
1.10.1 Spectrometric methods	17
1.10.1.1 Emission spectroscopy (ICP spectrometry)	17
1.10.1.2 Mass Spectrometry.	20
1.10.2.1.3 Atomic absorption spectrometry	20
1.10.2.2 Ion selective electrode2	21
1.10.2.3 Spectrophotometric methods	23
1.10.2.4 Derivative spectrophotometric technique (DS)	24
CHAPTER 2	
2. Experimental 32	32
2.1 Materials	32
2.2 Instrumentation 34	34
2.3 Preparation of stock solutions	34
2.3.1 Holmium stock solution	34
2.3.2 Erbium stock solution	34
2.3.3 Dye stock solution	34
2.3.4 Surfactant stock solution	35
2.3.5 Buffer stock solution	35
2.3.6 Interfering elements stock solutions	35
2.3.6.1 Lanthanum	35
2.3.6.2 Cerium. 3.5	35
2.3.6.3 Praseodymium.	35
2.3.6.4 Neodymium	36
2.3.6.5 Samarium	36

2.3.6.6 Europium	36
2.3.7.7 Gadolynium.	36
2.3.6.8 Terbium	37
2.3.6.9 Yttrium	37
2.3.6.10 Dysprosium.	37
2.3.6.11 Ytterbium.	37
2.3.6.12 Lutetium	37
2.3.6.13 Chloride	38
2.3.6.14 Sulphate	38
2.3.6.15 Nitrate	38
2.3.6.16 Perchlorate.	38
2.4 Spectrophotometric determination of holmium and erbium	39
2.4.1 Spectrum of kojic acid dye with holmium and erbium complexes	39
2.4.2 Effect of the pH variation on the absorption of the studied dye	39
2.5 Relevant factors affecting spectrophotometric determination of	
Ho-Koj-CPC & Ho-Koj-CPC complexes	39
2.5.1 Optimization of the suitable pH buffer value of Ho-Koj-CPC &	
Er-Koj-CPC complexes	40
2.5.2 Optimization of kojic acid dye concentration	40
2.5.3 Optimization of CPC cationic surfactant concentration	41
2.5.4 Effect of time on the formation and stability of the Ho-Koj-CPC &	
Er-Koj-CPC complexes	41
2.5.5 Effect of sequence of addition on the formation and stability of the	
Ho-Koj-CPC & Er-Koj-CPC complexes	41
2.5.6 Stoichiometry of Ho-Koj-CPC & Er-Koj-CPC complexes	42
2.5.6.1 Continuous variation method	42
2.5.6.2 Molar ratio method.	42
2.5.7 Calibration curve of holmium and erbium by the studied dye and	

surfactant	43
	42
2.5.8 The interference effect on holmium and erbium determination	43
2.5.9 Calibration curve of holmium and erbium with Koj and CPC	
using third-derivative	45
2.6.1 Separation of cerium.	45
2.6.2 Separation of heavy rare earth elements	45
CHAPTER III	
3. Results and Discussions	47
3.1.1 Spectrum of kojic acid dye with holmium and erbium complexes	47
3.1.2 Effect of the pH variation on the absorption of the studied dye	50
3.2 Relevant factors affecting spectrophotometric determination of	
Ho-Koj-CPC & Er-Koj-CPC complexes	52
3.2.1 Optimization of the suitable buffer pH value of Ho-Koj-CPC &	
Er-Koj-CPC complexes	53
3.2.2 Optimization of kojic acid dye concentration	54
3.2.3 Optimization of CPC cationic surfactant concentration	56
3.2.4 Effect of duration time on the formation and stability of the	
Ho-Koj-CPC & Er-Koj-CPC complexes	57
3.2.5 Effect of sequence of addition on the formation and stability of the	
Ho-Koj-CPC & Er-Koj-CPC complexes	58
3.2.6 Stoichiometry of Ho-Koj-CPC & Er-Koj-CPC complexes	59
3.2.6.1 Continuous variation method	59
3.2.6.2 Molar ratio method.	59
3.2.7 Calibration curve of holmium and erbium by the studied dye and	
surfactant	62
3.2.8 Studies of the interference effect on holmium and erbium	

determination
using third-derivative spectrophotometry
3.3 Separation of rare earth elements
3.3.1 Separation of cerium element
3.3.2 Separation of heavy rare earth elements
3.4 Application of the studied method using third derivative
spectrophotometry on Ho and Er determination
3.4.1 Chemical analysis of the investigated REE synthetic samples 79
3.4.2 Chemical analysis of the investigated REE in two geological
Concentrates80
3.4.3 Statistical Evaluation of the results
3.4. 4 Standard Error
3.4.5 Results of studied determination method of Ho and Er
measurements
Summary 87
References 89
Arabic summary

ACKNOWLEDGEMENT

Before all I should express my deep thanks to ALLAH, without his great blessings, I would never have accomplished my work.

I would like to express my deep thanks to Prof. Dr. Salah A. Abo - El-Enein, Prof. of Physical Chemistry, Faculty of Science; Ain Shams University, for valuable guiding and encouragement

I am deeply indebted to Prof. Dr. Hisham k. Fouad, Prof. of Analytical Chemistry, Nuclear Materials Authority, for his valuable guiding and encouragement in all the time of research and writing of this thesis

Especially I am obliged to Dr. Nasr A. Abdel-Fattah, Ass. Prof. of analytical Chemistry, Nuclear Materials Authority, for his assistance and supporting me through the present work.

Moreover, Dr. Abdo A. Abdo, Lecturer of Analytical Chemistry, Nuclear Materials Authority, was acknowledged for being an open-minded personality, help during the work, and supporting me through the present work.

Especially, I would like to express my sincere gratitude to my parents and my wife whose sponsoring and praying enabled me to complete this work

LIST OF TABLES

LIST OF TABLES

Table (1): Chemicals and reagents used through the experiments	33
Table (2): Optimization of the wavelength for kojic acid dye at different wavelengths	48
Table (3): Optimization of the wavelength for Koj-CPC at different wavelengths	48
Table(4): Optimization of the wavelength for Ho-Koj-CPC complex at different wavelengths.	49
Table(5): Optimization of the wavelength for Er-Koj-CPC complex at different wavelengths	50
Table (6): The effect of pH values on the absorption of Kojic acid dye at different wavelengths	1
Table (7): The effect of different pH values on the absorption of the Ho-Koj-CPC & Er-Koj-CPC complexes at 450 nm & 520 nm	53
Table (8): Optimization of Koj concentration on the absorbance of Ho-Koj-CPC & Er-Koj-CPC complexes at 450 nm & 520 nm5	55
Table (9): Optimization of CPC concentration on the absorbance of Ho-Koj-CPC & Er-Koj-CPC complexes at 450 nm & 520 nm5	56
Table (10): Effect of duration time on the absorbance of Ho-Koj-CPC & Er-Koj-CPC complexes at 450 nm & 520 nm	58
Table (11): Effect of sequence of addition on stability of Ho and Er complexes	;9
Table (12): Continuous variation method for estimating the molar ratio between Ho-Koj & Er-Koj	0
Table (13): Molar ratio method for estimating the molar ratio of CPC6	1
Table (14): Absorbance values of different holmium & erbium concentrations of Ho-Koj-CPC & Er-Koj-CPC complexes6	53
Table (15): Interference effect of La concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	55
Table (16): Interference effect of Ce concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	55

Table (17): Interference effect of Pr concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	66
Table (18): Interference effect of Nd concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	66
Table (19): Interference effect of Sm concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	67
Table (20): Interference effect of Eu concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	67
Table (21): Interference effect of Gd concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	
Table (22): Interference effect of Dy concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	
Table (23): Interference effect of Yb concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	
Table (24): Interference effect of Tm concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	
Table (25): Interference effect of Tb concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	70
Table (26): Interference effect of Lu concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes.	70
Table (27): Interference effect of Y concentration upon determination of Ho-Koj-CPC & Er-Koj-CPC complexes	71
Table (28): Interference effect of Cl ⁻ concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	
Table (29): Interference effect of NO ₃ ⁻² concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	72
Table (30): Interference effect of SO ₄ ²⁻ concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	73
Table (31): Interference effect of ClO ₄ ⁻ concentration on determination of Ho-Koj-CPC & Er-Koj-CPC complexes	73

Table (32): Amplitudes of holmium & erbium using third-derivative75
Table (33): Analysis data of separated Ce
Table (34): Analysis data of separated HREEs
Table (35): Chemical analysis of the synthetic samples
Table (36): Chemical analysis of the studied concentrates using ICP-OES80
Table (37): Holmium measuring data of the investigated synthetic samples using third-derivative spectrophotometer
Table (38): Erbium measuring data of the investigated synthetic samples using third-derivative spectrophotometer
Table (39): Holmium measuring data of the investigated samples using third-derivative spectrophotometer
Table (40): Erbium measuring data of the investigated samples using third-derivative spectrophotometer
Table (41): The collecting results of the investigated samples using third-derivative spectrophotometer

LIST OF FIGURES

