

FACULTY OF ENGINEERING

Mechanical Power Engineering

Performance Analysis of S-Shaped Helical Wind Turbine (SHWT)

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science In Mechanical Engineering

(Mechanical Power Engineering)

Ву

Yahia Salah El-Din Mohamed Zakaria El-Masry

Master of Science In Mechanical Engineering

(Mechanical Power Engineering)

Faculty of Engineering, Ain Shams, 2016

Supervised By

Prof. Mohamed Abo El Enein El Samanoudy

Dr. Ashraf Abd El Badee Ghorab

Cairo - (2016)

FACULTY OF ENGINEERING

Mechanical Power

Performance Analysis of S-Shaped Helical Wind Turbine (SHWT)

By

Student name

Master of Science In Mechanical Engineering

(Mechanical Power Engineering)

Faculty of Engineering, Ain Shams, 2016

Examiners' Committee

Name and Affiliation	Signature
Prof. Mohamed Fayek Abd Rabu	
Mechanical Power , Banha University	
Prof. Kadah Shaker Kadah	
Mechanical Power , Ain Shams University	
Prof. Mohamed Abo El Enein El-Samanoudy	
Mechanical Power , Ain Shams University	
Dr. Ashraf Abd El-Badee Ghorab	
Mechanical Power . Ain Shams University	

Date: 21 November 2016

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering , Faculty of Engineering Ain shams University degree in Mechanical Power Engineering.

A huge work in this thesis is carried out by the author. This work includes, designs of six S-Shape Helical wind turbines SHWT 90°, 120° and 180°, single and double, then manufacture all of them, then testing the SHWT turbines in an open system wind tunnel with calibrated measurement instruments.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Yahia Salah El Din El-Masry

Signature

Date: 21 November 2016

Researcher Data

Name : Yahia Salah El-Din Mohamed Zakaria El-Masry

Date of birth : 25/8/1988

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Engineering

Field of specialization : Mechanical Power

University issued the degree : Ain Shams University

Date of issued degree : June 2011

Current job : Engineer "Senior Engineer" UNDP

Thesis Summary

In this study we present an experimental and numerical investigation for the performance of a specially designed S-Shaped Helical Wind Turbine (SHWT). The study is carried out for single blade & double blade turbines with three different helical angles; namely (90, 120 & 180 degree). The turbines fabricated from ply wood with 0.6 m diameter, 0.7 m length and 2 cm thickness.

Experiments are performed using 0.8×0.8 m² wind tunnel cross section area at a constant wind speed of 8 m/sec. Experiments are performed to obtain the turbine performance for the several considered designs and comparing between them. Numerical analysis using computer software "Ansys V14.5" is used to develop single blade turbine with helical profile 90 angle degree to study the velocity and pressure contours. This aims to compare the results with the obtained experimentally for the verification of the selected model.

Several results are obtained for the selected designs. It is found that, within the tested range, the double blade turbine with helical angle of 120 degree has the highest performance compared with the other configurations. The obtained Power Coefficient (C_p) is 0.12 at Tip Speed Ratio (TSR) of 0.52. Double blade S-Shaped Helical Wind Turbines SHWT has higher torque coefficient than single blade at the same helical profile and the single and double blade S-Shaped Helical Wind Turbine SHWT at helical profile 180 degree has the lowest performance and torque coefficient compared to other SHWT turbines, where single blade at 180 degree the power coefficient is 0.058, torque coefficient 0.24 and the double blade at 180 degree the power coefficient is 0.0853, torque coefficient is 0.28.

All of the obtained results are compared with other investigators and a fair agreement is found.

Key words: S-Shaped Helical Wind Turbine, Horizontal Axis Wind Turbine, Coefficient of Power, Torque Coefficient, Tip Speed Ratio, Single Blade, and Double Blade.

Acknowledgment

I want to express my deep gratitude and appreciation to:

Prof. Dr. Mohamed Abo El Enein El- Samanoudy, professor doctor of, Mechanical Power department, Faculty of Engineering Ain Shams University.

And

Assistant Pro. Dr. Ashraf Abd El Badee Ghorab,
Assistant professor doctor, Mechanical Power department, Faculty
of Engineering Ain Shams University.

For their guidance and continuous encouragement through this huge work and their sincere assistance, continuous help. I also appreciate their following up and continuous advice and constructive remarks in the preparation and all the process of this thesis.

November 2016

Table of Contents

Chap	ter 1	:	
Intro	ducti	on	1
1.	The c	haracteristics of wind	1
	1.1.	Global circulation	1
	1.2.	The wind power Extractable limit	3
	1.3.	Wind power (WP) generation	3
	1.4.	The shear of wind	4
	1.5.	Directions of the wind	5
	1.6.	The Turbulence of wind	6
	1.7.	The Wind Rose graphical representation	6
2.	Adva	ntage and disadvantage of wind energy	7
		ry of Wind Turbine	
	3.1.	Development of Wind Turbines	8
	3.2.	Revolution of wind energy development	9
4.	Wind	energy in Egypt	10
	4.1.	Total installed capacity	10
	4.2.	The places suitable for wind energy generation	10
5.	Wind	Turbines types	12
	5.1.	Horizontal Axis Wind Turbine (HAWT)	14
	5.2.	Vertical Axis Wind Turbine (VAWT)	
6.	The c	bjective of this thesis	20
	6.1.	Developed a new wind turbine	20
	6.2.	The main approach	
	6.2	The proposed study of SHWT	

Chapter 2:

Histo	rical	Review	22
1.	VAW	T and HAWT	22
2.	VAW	Т	23
3.	Savo	nius wind turbine	25
4.	CFD r	modeling on Helical Savonius Rotor with a twist	
	ange	I	36
5.	Outp	out from all the previous work is as following	43
Chap	ter 3	:	
Turb	ine M	lanufacturing and Test Setup	44
1.	Way	of Manufacturing	44
2.	Manı	ufacturing idea	45
3.	The c	construction of the S-Shape Helical blade	46
4.	Main	parts of SHWT for Single and double Blade	51
	4.1.	S-Shape Helical blade	52
	4.	1.1. S-Shape Helical Blade with helical profile (90)	
		degrees for Single and double Blade	
	4.	1.2. S-Shape Helical Blade with helical profile (120))
		degrees for Single and double Blade	54
	4.	1.3. S-Shape Helical Blade with helical profile (180))
		degrees for Single and double Blade	56
	4.2.	Connector Hub	58
	4.3.	Shafts	61
	4.4.	Bearing House	
	4.5.	Bearing	
5		assembly of S-Shaped Helical Horizontal Axis Wind	
٦.		ine of different twisted angle profile and different	
		ber of bladesber of blades	
6		of the turbine	
		rimental Setup and Measurements	

	7.1. Measuring instruments that used in variable	
	measurements	.66
	7.1.1. Wind Tunnel	.66
	7.1.2. Digital Anemometer	.68
	7.1.3. Digital Tachometer	.69
	7.1.4. Force scale	.70
	7.2. Calculations	72
8.	Procedures to run the experimental work according to following	
	10110W111g	.75
Chap	oter 4:	
Expe	erimental Results and discussion	74
1.	. Single blade S-Shaped Helical Wind Turbine SHWT at he	elical
	profile of angle 90°	
2.	Single blade S-Shaped Helical Wind Turbine SHWT at he	
2	profile of angle 120°	
3.	Single blade S-Shaped Helical Wind Turbine SHWT at he	
_	profile of angle 180°	
4.	Double blade S-Shaped Helical Horizontal Axis Wind Tur	
_	at helical profile of angle 90°	
5.	Double blade S-Shaped Helical Horizontal Axis Wind Tur	
	at helical profile of angle 120°	
6.	Double blade S-Shaped Helical Horizontal Axis Wind Tur	
	at helical profile of angle 180°	
7.	. Comparison between of different angle profile and Nun	
	of blades1	100
	7.1. Comparison of S-Shaped Helical Wind Turbine "SH	WT"
	at helical profile of angle 90° between single	and
	double blade100	

	/.Z.	Comparison of S-Snaped Helical Wind Turbines
		"SHWT" at helical profile of angle 120° between single
		and double blade103
	7.3.	Comparison of S-Shaped Helical Wind Turbines
		"SHWT" at helical profile of angle 180° between single
		and double blade106
	7.4.	Comparison of single S-Shaped Helical Wind Turbines
		"SHWT" at Different helical profile at angles 90°,120°
		and 180°109
	7.5.	Comparison of double SHWT at Different helical profile
		of helical angles 90°,120° and 180°112
8.	Comp	arison between SHWT and pervious work115
	8.1.	Comparison of SHWT Single Blade at helical angle 90°
		Versus M.A kamojo Helical Savonius Rotor at helical
		angle 90°115
	8.2.	8.2. Comparison of "SHWT" single blade at helical
		angle 180° and A.Damak Helical Savonius Rotor at
		helical angle 180°119
	8.3.	Comparison between SHWT double blade and at helica
		angle 120° and Savonius of Three Blades123
Chap	ter 5:	
Com	outati	onal Fluid Dynamics of S-Shaped Helical Wind
Turbi	ne of	Angel 90°127
1.	Introd	duction127
2.	Desig	ning 3D model128
3.	Comp	utational design128
4.	The to	urbulence flow model132
5.	Result	ts133

	5.1.	Velocity distribution	on	•••••		133
	5.2.	Pressure Distributi	ion			136
6.	Comp	arison of the 90 de	gree S	-Shaped Helical	Wind T	urbine
	SHWT	performance	in	Experimental	and	CFD
	result	S			•••••	138
Chap	ter 6:					
Conc	lusior	and Recommen	dation	າ		.140
1.	Concl	usion				140
2.	Recor	nmendation				141

List of Figures

Figure 1.1: The circulation of atmosphere	2
Figure 1.2: Sea breeze and land breeze	3
Figure 1.3: Wind flow over a cylinder of area A	4
Figure 1.4: Wind shear Diagram	
Figure 1.5: The Wind Rose Diagram	
Figure 1.6: The Netherlands wind mills	8
Figure 1.7: Global wind capacity	10
Figure 1.8: Wind Atlas Egypt	
Figure 1.9: Wind Turbines types	
Figure 1.10: Betz limit as reference to all wind turbine	13
Figure 1.11: Convention HAWT	14
Figure 1.12: Various types VAWT	
Figure 1.13: Darrieus turbine	
Figure 1.14: Savonius turbine	
Figure 1.15: Helical Savonius turbine	18
Figure 1.16: Giromill Turbine	19
Figure 2.1: C_T versus λ 2 and 3 blades Savonius wind turbin	e29
Figure 2.2: C_p versus λ for both 2 and 3 blades Savonius wi	nd
turbine	30
Figure 2.3: Twisted Savonius wind turbine	31
Figure 2.4: Helical Savonius	32
Figure 2.5: the comparison between the performances of	the
helical Savonius blade with twist angle 180° with the tradit	
Savonius Blade	33
Figure 2.6: 3D Helical Savonius wind turbine with three bla	ides and
twist angle 90°	37
Figure 2.7: CFD domain and boundary condition	37
Figure 2.8: CFD mesh for Helical Savonius wind turbine wit	h twist
angle 90°	38
Figure 2.9: Vertical-Axis Spiral Rotor	40

Figure 3.1: Single S-Shaped Segment45	
Figure 3.2: Double S-Shaped Segment Perpendicular on Each	
Other46	
Figure 3.3: Helical of each (S) Segments by the required leading	
angle for the required helical profile47	
Figure 3.4: Helical Profile of SHWT at helical angle 90° single blade	,
before Coating48	
Figure 3.5: Helical Profile of SHWT at helical angle 120° single	
blade before Coating48	
Figure 3.6 Helical Profile of SHWT at helical angle 180° single blade	e
before Coating49	
Figure 3.7: Helical Profile of SHWT at helical angle 90° double	
blade before Coating49	
Figure 3.8: Helical Profile of SHWT at helical angle 120° double	
blade before Coating50	
Figure 3.9: Helical Profile of SHWT at helical angle 90° double	
blade before Coating50	
Figure 3.10: Main parts of S-Shaped Helical Wind Turbine SHWT	
for Single and Double Blade51	
Figure 3.11: Helical Profile of SHWT at helical angle 90° single	
blade after Coating53	
Figure 3.12: Helical Profile of SHWT at helical angle 90° double	
blade after Coating54	
Figure 3.13: Helical Profile of SHWT at helical angle 120° single	
blade after Coating55	
Figure 3.14: Helical Profile of SHWT at helical angle 120° double	
blade after Coating56	
Figure 3.15: Helical Profile of SHWT at helical angle 180° single	
blade after Coating57	
Figure 3.16: S Helical Profile of SHWT at helical angle 180° single	
blade after Coating58	
Figure 3.17: Single Slot Connector Hub59	

Figure 3.18: The working mechanism of Single Slot Connector
Hub59
Figure 3.19: Double Slot Connector Hub60
Figure 3.20: The Working Mechanism of double Slot Connector
Hub60
Figure 3.21: The Shaft Assembly with the Bearing and the
Connector Hub61
Figure 3.22: The Shaft Mechanism62
Figure 3.23: Bearing House62
Figure 3.24: Bearing63
Figure 3.25: Assembly of Single blade at helical angle 90°63
Figure 3.26: Assembly of Double blade at helical angle 90°63
Figure 3.27: Assembly of Single blade at helical angle 120°64
Figure 3.28: Assembly of Double blade at helical angle 120°64
Figure 3.29: Assembly of Single blade at helical angle 180°64
Figure 3.30: Assembly of Double blade at helical angle 180°64
Figure 3.31: Wind Tunnel67
Figure 3.32: Digital Anemometer68
Figure 3.33: Measurement of wind speed at the outlet area of the
wind tunnel69
Figure 3.34: Digital Tachometer70
Figure 3.35: Force Indicator71
Figure 3.36: breaking system72
Figure 4.1: C _p Vs. λ at 90° helical angle, Single blade76
Figure 4.2: C_T Vs. λ at 90° helical angle, Single blade77
Figure 4.3: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 90° helical angle, Single
blade78
Figure 4.4: $C_T/C_{T.max}$ Vs. λ at 90° helical angle, Single blade79
Figure 4.5: C _p Vs. λ at 120° helical angle, Single blade80
Figure 4.6: C_T Vs. λ at 120° helical angle, Single blade81
Figure 4.7: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 120° helical angle, Single
blade82
Figure 4.8: C _T /C _{T.max} Vs. λ at 120° helical angle. Single blade83

Figure 4.9: C_p Vs. λ at 180° helical angle, Single blade84
Figure 4.10: C_T Vs. λ at 180° helical angle, Single blade85
Figure 4.11: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 180° helical angle, Single
blade86
Figure 4.12: $C_T/C_{T.max}$ Vs. λ at 180° helical angle, Single blade87
Figure 4.13: C_p Vs. λ at 90° helical angle, Double blade88
Figure 4.14: C_T Vs. λ at 90° helical angle, Double blade89
Figure 4.15: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 90° helical angle, Double
blade90
Figure 4.16: $C_T/C_{T.max}$ Vs. λ at 90° helical angle Double blade91
Figure 4.17: C_p Vs. λ at 120° helical angle, Double blade92
Figure 4.18: C_T Vs. λ at 120° helical angle, Double blade93
Figure 4.19: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 120 helical angle Double
blade94
Figure 4.20: $C_T/C_{T.max}$ Vs. λ at 120° helical angle Double blade95
Figure 4.21: C_p Vs. λ at 180° helical angle, Double blade96
Figure 4.22: C_T Vs. λ at 180° helical angle, Double blade97
Figure 4.23: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 180° helical angle, Double
blade98
Figure 4.24: $C_T/C_{T.max}$ Vs. λ at 180° helical angle, Double blade99
Figure 4.25: C _p Vs. λ at 90° helical angle, comparison between
Single and double Blade100
Figure 4.26: C _T Vs. λ at 90° helical angle, comparison between
Single and double Blade100
Figure 4.27: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 90° helical angle,
comparison between Single and double Blade102
Figure 4.28: C _p Vs. λ at 120° helical angle, comparison between
Single and double Blade103
Figure 4.29: C_T Vs. λ at 120° helical angle, comparison between
Single and double Blade104
Figure 4.30: $C_p/C_{p.max}$ Vs. λ/λ at $C_{p.max}$ at 120° helical angle,
comparison between Single and double Blade105