

A GLOBAL INTEGRATED MODEL FOR A TIME-DEPENDENT WELLBORE STABILITY PREDICTION

By

Mostafa Magdy Elsayed AbdelHafiz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
PETROLEUM ENGINEERING

A GLOBAL INTEGRATED MODEL FOR A TIME-DEPENDENT WELLBORE STABILITY PREDICTION

By Mostafa Magdy Elsayed AbdelHafiz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE in
PETROLEUM ENGINEERING

Under the Supervision of

Prof. Dr. Eissa Mohamed Shokir

Professor of Petroleum Engineering
Mining, Petroleum and Metallurgical Engineering Department
Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A GLOBAL INTEGRATED MODEL FOR A TIME-DEPENDENT WELLBORE STABILITY PREDICTION

By Mostafa Magdy Elsayed Abdelhafiz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
PETROLEUM ENGINEERING

Approved by the Examining Committee
Prof. Dr. Eissa Mohamed Shokir, Thesis Main Advisor
Prof. Dr. Fouad Khalaf, Internal Examiner
Eng. Abdelaleem Taha, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Mostafa Magdy Elsayed Abdelhafiz

Date of Birth: 27/11/1991 **Nationality:** Egyptian

E-mail: mmostafamagdy@gmail.com

Phone: +20-100 440 5702

Address: 12-Mohamed Morsi St., Haram, Giza, Egypt.

Registration Date: 1/3/2014

Awarding Date: 2016

Degree: Master of Science **Department:** Petroleum Engineering

Supervisors:

Prof. Eissa Mohamed Shokir

Examiners:

Porf. Eissa Mohamed Shokir (Thesis main advisor)
Prof. Fouad Khalaf Mohamed (Internal examiner)
Eng. Abdel Aleem Hassan Taha (External examiner)

Chairman-National Petroleum Company

Title of Thesis:

A Global Integrated Model for A Time-Dependent Wellbore Stability Prediction

Key Words:

Wellbore stability; Mechanical Earth Model; Rock Mechanics; Safe Mud window; Optimum well trajectory

Summary

This work presents an integrated wellbore stability model using well log data and a time dependent poroelastic model. An iterative approach was build using MATLAB to determine the optimum wellbore trajectory and safe mud window. Mechanical Earth Model was constructed using log data. Wellbore stresses were determined using the poroelastic constitutive model. Modified Lade Criterion was used to determine the failure conditions of the wellbore walls. The results of the developed model were validated against actual well log data from Gulf of Suez, Egypt.

Acknowledgments

First and foremost, I would like to thank my thesis advisor Prof. Eissa Shokir of the Petroleum Engineering Department at Cairo University. The door to Prof. Shokir office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me to the right direction whenever he thought I needed it.

I would also like to thank the experts who were involved in the validation survey for this research project: Prof. Fouad Khalaf of the Petroleum Engineering Department at Cairo University. Without their passionate participation and input, the validation survey could not have been successfully conducted.

I would also like to acknowledge Dr. Moustafa Oraby of the Petroleum Engineering Department at Future University in Egypt as the second reader of this thesis, and I am gratefully indebted to them for their very valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents, my friends and my colleagues for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Dedication

This thesis is dedicated to: The sake of Allah, my Creator and my Master, my great teacher and messenger, Mohammed (May Allah bless and grant him), who taught us the purpose of life; My great parents, who never stop giving of themselves in countless ways, my undergraduate professors and teachers, who lead me through the valley of darkness with light of hope and support, my friends who encourage and support me, All the people in my life who taught me anything useful, I dedicate this research.

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	
NOMENCLATURE	
ABSTRACT	
CHAPTER 1 : INTRODUCTION	
CHAPTER 1: INTRODUCTION	I
CHAPTER 2 : LITERATURE REVIEW	3
2.1. Introduction	3
2.2. WELLBORE STABILITY ANALYSIS	
2.2.1. Chemical Induced Instabilities	
2.2.2. Mechanical Induced Instabilities	
2.3. Wellbore stresses	
2.3.1. Constitutive Models	
2.3.2. Linear Elastic Model	
2.3.3. Poroelastic Model	
2.4. ROCK FAILURE CRITERION	
2.4.1. Shear Failure Criteria	
2.4.1.1. Intermediate stress independent failure criterion	
2.4.1.2. Intermediate stress dependent failure criterion	
2.4.2. Tensile Failure Criteria	
2.5. MECHANICAL EARTH MODELING	
2.5.1. Rock Mechanical Properties Calculation	
2.5.2. Rock Strength Calculation	
2.5.3. Pore Pressure and In-situ Stresses Prediction	
2.5.3.1. Pore Pressure	
2.5.3.2.1. Vertical Stress	
2.5.3.2.2. Minimum Horizontal Stress	14
2.5.3.2.3. Maximum Horizontal Stress	
2.6. Previous Studies on Wellbore Stability	18
CHAPTER 3 : STATEMENT OF PROBLEM	20
CHAPTER 4: BUILDING THE INTEGRATED WELLBORE ST	FABILITY
MODEL	21
4.1. BUILDING THE MECHANICAL EARTH MODEL	21
4.1. Determination of Rock Strength and Elastic Properties	
4.1.1. Determination of Rock Strength and Elastic Properties	21

4.1.3. In-situ stresses Calculation	24
4.1.3.1. Vertical Stress Magnitude	
4.1.3.2. Horizontal Stress Direction	
4.1.3.3. Horizontal Stresses Magnitudes	
4.2. STRESSES AROUND THE WELLBORE	27
4.2.1. In-situ Stresses Transformation	
4.2.1.1. Transformation to geographic coordinates	
4.2.1.2. Transformation to wellbore coordinates	
4.2.2. Derivation of The Poroelastic Equation	
4.2.2.1. Poroelastic Model Description	
4.2.2.2. Poroelastic Governing Equations	
4.2.2.3. Principal stresses around the wellbore	
4.3. DETERMINATION OF THE SAFE MUD WINDOW	
4.4. PROGRAM ALGORITHM	
4.5. MODEL VALIDATION	38
CHAPTER 5 : RESULTS AND DISCUSSION	44
5.1. CONSTRUCTION OF MEM FOR WELL X	
5.2. ANALYSIS FOR ZONE A	47
5.2.1. Basic Analysis	47
5.2.2. Model Validation for Zone A	50
5.2.3. Recommendation for remedial	54
5.2.3.1. Borehole pressure optimization	55
5.2.3.2. Wellbore trajectory optimization	
5.2.3.3. Optimization of borehole pressure and well trajectory	60
5.3. Analysis for Zone B	62
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	66
REFERENCES	67
APPENDIX A	
A.1. WELL-X, 8.5" SECTION TRIPLE COMBO LOG	71
A.2. WELL-X, 8.5" SECTION CROSSED DIPOLE SONIC LOG	75
APPENDIX B	82
B.1. SAMPLE OF MATLAB CODE FOR GENERATING THE MEM	92
B.2. SAMPLE OF MATLAB CODE FOR THE MINIMUM REQUIRED MUD WEIGHT	
TD A LECTORY	83

List of Tables

Table 2-1 Lithology Dependent Constants for Onyia's Equation	12
Table 2-2 Correlations used for UCS prediction source (Zobak 2007[1])	13
Table 4-1 Rotational Angle for the geographic coordinates transformation	27
Table 4-2 Well X Data	40
Table 5-1 Average rock Elastic Properties for Zone A and B used for model	
Table 5-2 Model Output for Zone A	

List of Figures

Figure 2-1 Schematic drawing illustrating the relationship between mud weight and mechanically induced borehole instability
Figure 2-2 Stress distribution around the wellbore5
Figure 2-3 Kirsch Solution Parameters6
Figure 2-4-Schematics shows the interaction between rock deformation, fluid flow, and the pore pressure in the reservoir
Figure 4-1 Building the MEM Flow Chart21
Figure 4-2 Example for Mohr-Coulomb Failure illustrating the relationship between rock cohesion and UCS
Figure 4-3 Example illustrating the determination of Normal Compaction Trend line for Eaton
Figure 4-4 Density Log tool
Figure 4-5 Determination of horizontal stress direction from Breakouts25
Figure 4-6 Determination of Breakouts from Wellbore Sonic Image (After Zobak, 2007)
Figure 4-7 Directions of maximum horizontal stress in Arab Gulf and Gulf of Suze Areas according to World Stress Map data base
Figure 4-8 Stresses transformation to the geographic coordinates
Figure 4-9 Stresses transformation to the wellbore coordinates
Figure 4-10 Schematic of the Poroelastic Model Description30
Figure 4-11 Schematic representation for Wellbore Principal Stresses
Figure 4-12 Modified Lade Criterion
Figure 4-11 Program Inputs / Outputs
Figure 4-12 Program Work Flowchart
Figure 4-13 Location Map for Well
Figure 4-14 Cross sections through the Central Eastern margin of the Gulf of Suez39
Figure 4-15 Well-X Trajectory Schematic
Figure 4-16 Conventional well log data of Well X41

Figure 4-17 Crossed dipole sonic log data of Well X
Figure 4-18 3D Wellbore Image and Cross Section for Well-X, Zone A using43
Figure 4-19 3D Wellbore Image and Cross Section for Well-X Zone B Using43
Figure 5-1 1D MEM Constructed for Well X
Figure 5-2 Determination of SH_{max} using Breakout analysis for Zone A45
Figure 5-3 SH _{max} direction in GOS after World Stress Map
Figure 5-2 Hoop stresses as a function of θ^o and time at $r/r_w=1$ 47
Figure 5-3 Hoop stresses as a function of θ^o and time at r/r_w =1.147
Figure 5-4 Hoop stresses as a function of radial distance and time48
Figure 5-5 Radial stresses as a function of r and time
Figure 5-6 Pore pressure as a function of r and time
Figure 5-7 Shear Failure index around the wellbore for Zone A at initial time51
Figure 5-8 Shear Failure index around the wellbore for Zone A after 1-hr51
Figure 5-9 Comparison between Developed Model prediction and Actual Wellbore image for Zone A
Figure 5-10 Stresses and failure profiles as a function of time for Zone A53
Figure 5-11 Mud pressure window function of hole deviation angle for Zone A54
Figure 5-12 Modified Lade Criterion function of wellbore pressure for Zone A55
Figure 5-13 Shear Failure index projection on Stereonet map function of inclination and azimuth Mwt 9.2 ppg
Figure 5-14 Shear Failure index projection on Stereonet map function of inclination and azimuth Mwt 10.2 ppg
Figure 5-15 Shear Failure index projection on Stereonet map function of inclination and azimuth Mwt 11.2 ppg
Figure 5-16 Shear Failure index projection on Stereonet map function of inclination and azimuth Mwt 12.2 ppg
Figure 5-17 Minimum allowable mud weight as function of well inclination and azimuth
Figure 5-18 maximum allowable mud weight as function of well inclination and azimuth

Figure 5-19 Shear Failure index around the wellbore for Zone B at initial time62
Figure 5-20 Shear Failure index around the wellbore for Zone B after 1-hr63
Figure 5-21 Comparison between Developed Model prediction and Actual Wellbore image for Zone B
Figure 5-22 Stresses and failure profiles as a function of time for Zone B64
Figure 5-23 Mud pressure window function of hole deviation angle for Zone B65

Nomenclature

Ø **Porosity** Pore pressure function in time ΔPr_{t}^{\sim} ΔT Temperature difference Sonic Compressional time slowness Δt_c Sonic Compressional time slowness from sonic log Δt_{log} Sonic Compressional time slowness from normal Δt_{norm} compaction trend line Sonic shear time slowness Δt_s Induced radial stress $\Delta \sigma_r (r,t)$ $\Delta \sigma_{\theta} (r,t)$ Induced shear stress Blanton and Olson material constant as Blanton and Olson material constant bs Diffusion coefficient C \boldsymbol{C} Hydraulic diffusivity coefficient C1' Blanton and Olson constant calculated at XLOT depth C2' Blanton and Olson constant calculated at XLOT depth Uniaxial compressive strength Co, UCS **Rock Total Compressibility** c_t Depth (km) d **DSI** Dipole sonic Imaging \boldsymbol{E} Young's Modulus Depth compaction factor \boldsymbol{f} Gravitational acceleration g \boldsymbol{G} Shear Modulus of elasticity **GPa** Giga Pascal I_1 " First invariants stress I_3 " Third invariants stress Shear Failure Index I_{sf} Absolute permeability k L^{-1} Laplace inversion

LWD Logging While Drilling

m Hoek Brown material constant

mD Mille Darcy

MD Measured Depth

MPa Mega Pascal

MPa Mega Pascal

n Modified lade parameter

 $P_{e-\Delta}$ Pressure difference between minimum horizontal stress

and pore pressure of formation

ppg Pounds per gallon

 P_r Pore pressure

 P_{rn} Normal pore pressure

 p_w Borehole pressure

r Radius of investigation

 R_b wellbore rotational tensor

 R_s Geographic rotational tensor

 R_w Wellbore radius

s Hoek Brown material constant

 S_{geo} stress tensor in the geographic coordinate

Sh Minimum horizontal stress calculated from XLOT

So Rock cohesion

 S_{org} Original stress tensor

 S_{wb} Wellbore stresses tensor

t Time

TD Total depth

 T_o Tensile strength

TVD True vertical depth

v Poisson's ration

v_{fast} Poisson's ration from fast shear wave

Vp Sonic compressional velocity

v_{slow} Poisson's ration from slow shear wave

zw Water depth

α Biot's contestant

δ	Wellbore azimuth
Etec	Tectonic strain
η	poroelastic coefficient
heta	Position around wellbore
λ	Lame's First parameter
μ	Fluid viscosity
$ ho_b$	Bulk density
$ ho_w$	Water density
σ_h	Minimum horizontal stress
σ_H	Maximum horizontal stress
$\sigma_{h}{}^{'}$	Effective minimum horizontal stress
σ_{m2}	Mean normal stress
σ_{max}	Maximum principal stress
σ_{min}	Minimum principal stress
σ_r	Radial stress
σ_{rr}	Radial stress around the wellbore
σtec	Techtronic stresses
σ_{tmax}	Maximum principal stress
σ_{tmin}	Minimum principal stress
σv	Vertical stress
$\sigma_{v}^{'}$	Effective vertical stress
σ_x	Normal Stress in X direction
σ_x	Original Stress in X direction
σ_y	Normal Stress in Y direction
σ_y	Original Stress in Y direction
σ_z	Normal Stress in Z direction
σ_z .	Original Stress in Z direction
σ_{zz}	Axial Stress around the wellbore
$oldsymbol{\sigma}_{ heta}$	Hoop stress (Tangential stress)
$oldsymbol{\sigma}_{ heta heta}$	Tangential stress around the wellbore
$ au_{oct}$	octahedral shear stress
$ au_{rz}$	Shear stress in rz plane
$ au_{r heta}$	Shear stress in r θ plane