Abstract

The damage to the supporting structures of these compartments leads to SUI. The degree of the disruption of the urethral ligaments and puboperineal muscles should be estimated in the SUI cases to be diagnosed and managed correctly.

The conventional ways of diagnosis of pelvic floor dysfunction include voiding cystourethrogram, ultrasound and urodyamic but in recent years with advances in technology MRI proved to be the best to detect the degree of the floor dysfunction and to know which structure is damaged as dynamic MRI can detect and grade the pelvic floor relaxation by using HMO system, estimate width of the Levator hiatus and assessment of the iliococcygeal angle.

Endovaginal MRI appears to be the most precise way to know the causing structural damage by imaging the urethra and its anchoring ligaments, detecting and estimating the damage to the pubic component of the Levator ani muscle, and to detect the damage of three levels of fascial support of DeLancey.

Kewardes: Arcus tendineus fascia pelvic- Arcus tendineus levator ani-Urogenital hiatus- Levator ani- Levator hiatus- Longitudinal muscle of the anus

_

Role of MR Imaging in Evaluation of Pelvic Floor Weakness in Stress Urinary Incontinence in Female

Essay

Submitted for Partial Fulfillment of Master Degree in Urology

Presented by

Ahmed Osman Mohamed Mohamed

(M.B,B.Ch)

Under Supervision of

Dr. Mohamed Shukry Mohamed Shoeb

Assistant Professor of Urology Faculty of Medicine - Ain-Shams University

Dr. Mahmoud Ahmed Mahmoud

Lecturer of Urology Faculty of Medicine -Ain-Shams University

> Faculty of Medicine Ain-Shams University 2016

First and foremost thanks to ALLAH whose magnificent help has been the main factor in accomplishing this research work.

I want to thank my **Father and my Mother** for their encourgment and complete support they provided.

I especially want to thank **Dr. Mohamed Shukry Mohamed**Shoeb Assistant Professor of Urology Faculty of Medicine AinShams University, for his guidance. His understanding &
encouragement have provided a good basis for this essay. I feel greatly
honored to work under his supervision.

I am deeply grateful to **Dr. Mahmoud Ahmed Mahmoud** lecturer of Urology Faculty of Medicine Ain-Shams University, for being a constant source of encouragement throughout my study and giving me all his time to help me.

Ahmed Osman

بسم للله الترحمن الترحيم

﴿ هَالُوا سُبُّكَانَكَ لَا عِلْمَ لَنَا إِلَا مَا عَلَمُ لَنَا إِلَا مَا عَلَمُ لَنَا إِلَا مَا عَلَمُ الْكَمِكِيمُ ﴾ عَلَمْتَنَا إِنَّمِكِيمُ ﴾

صرق (لأنة (العظيم ﴿سورة البقرة: ٢١﴾

List of Contents

Title Page No.
List of Tables i
List of Figuresiv
List of Abbreviationsvi
Introduction
Aim of the Work
• Chapter (1): Functional Anatomy of Female Pelvic Floor. 13
• Chapter (2): Pathophysiology of Female Stress Urinary Incontinence
• Chapter (3): Diagnosis and Clinical Evaluation of Stress Urinary Incontinence In Female
• Chapter (4): Normal MRI Anatomy of Pelvic Floor 81
 Chapter (5): Role Of Endovaginal Mri (EV-MRI) And Dynamic Pelvic Mri (DP-MRI) In Diagnosis Of Female Stress Urinary Incontinence
Summary
References

List of Cables

Table No.	Title	Page No.
Table (5-1):	Grading of Pelvic Floor Relaxation	109
Table (5-2):	Grading of Pelvic Organ Prolapse	115

Fig. No.	Title Pag	ge No.
Figure (1-1):	The pelvic bones	15
Figure (1-2):	Pelvic walls.	15
Figure (1-3):	Pelvic fascia	17
Figure (1-4):	Pelvic diaphragm	22
Figure (1-5):	Draw of inferior pelvic floor view	23
Figure (1-6):	Draw of connective tissue support of uterus and upper two thirds of vaging. The cut was done to the urethra and vagina just above the pelvic floor muscle.	a. ıd
Figure (1-7):	Pelvic viscera and Levator ani relation at rest (A) in increase intra-abdomina pressure (B)	ns al
Figure (1-8):	Drawing of female pelvic wall and floor i	
Figure (1-9):	The striated pelvic muscles and organs of the pelvic floor	
Figure (1-10):	Urogenital hiatus (UGH), Levator plat changes and vaginal axis change	
Figure (1-11):	Borders and ceiling of the perineum Boundaries of the perineum And Perines membrane	n, al
Figure (1-12):	Ligaments that anchor the neck of the bladder and pelvic part of the urethra the pelvic bones	ne to
Figure (1-13):	Urethral anatomy	
Figure (1-14):	The female urethra contains an internal sphincter and an external sphincter	al
Figure (1-15):	Location of various structures along the	ıe
Figure (1-16):	The diagram demonstrate the synergism	m 13

Fig. No.	Title	Page No.
Figure (1-17):	Structure - The suspension	bridge
	analogy.	44
Figure (1-18):	Trampoline analogy- Function	45
Figure (1-19):	Hammock hypothesis	46
Figure (1-20):	Scheme of urethrovesical unit at re	est48
Figure (1-21):	The vagina transmits muscle for close urethra and bladder neck	
Figure (1-22):	Micturition (Scheme) figure correwith the situation shown	-
Figure (2-1):	The nine main connective structures needing surgical repair.	
Figure (2-2):	Stress incontinence – lax PUL flang the urethra.	fails to
Figure (3-1):	MESA Urinary incontinence question	
Figure (3-2):	Lateral view dynamic cystoprocto in a 62 yrs.	graphy
Figure (4-1a,b):	R anatomy of the normal vagina images without coils	on T2
Figure (4-2 a,b):	T2 sagittal images without coils different healthy pre-menopausal v	of two
Figure (4-3 a,b):	MRI without coils of a 40 yrs	86
Figure (4-4a,b):	A.12 - images of a 26 year old nulli woman (midline section) Posit	
	pelvic organs at rest	87
Figure (4-5): (a)	T2 MR image Coronal view s through the anterior anal sphincte an endoanal coil (b) corresponding in a 30 yrs, female valunteer demonstrates	er with g draw
	in a 30 yrs. female volunteer demo	usurateoo

Fig. No.	Title	Page No.
Figure (4-6): (a)	T2 MR image transverse view scathrough the upper part of the sphincter with an endoanal coil (b) in a 30 yrs. female volunteer show the	anal draw
Figure (4-7): (a)	T2 MR image transverse view scathrough the lower part of the sphincter with an endoanal coil (b) in a 25 yrs. asymptomatic female	anal draw
Figure (4-8):	(a)T2 MR image in sagittal view sca with endoanal coil (b) draw in a 30 female volunteer	0 yrs.
Figure (4-9):	MR scans in axial view without confemale pelvic floor structures volunteer woman who is nullipara	of a
Figure (1-1):	Axial section without coils at the le middle urethra showing different levator ani muscle thickness configuration.	vel of ce in and
Figure (4-10):	Levator ani muscle thickness	
Figure (4-11):	Levator hiatus	95
Figure (4-12):	Axial views at the level of the murethra without coils.	niddle
Figure (4-13):	MR midsagittal views of the fepelvis without coils	
Figure (4-14):	The following reference lines have g acceptance	
Figure (4-15):	Images for normal MR and identification on the axial view wi coils.	thout
Figure (4-16):	Coronal MR views from MR without coils of the female pelvic structures	scans

Fig. No.	Title	Page No.
Figure (5-1):	Midsagittal T2 view scanned in a finatient has done hysterectomy, she the HMO classification system	owing
Figure (5-2):	Dynamic T2 MRI in the three orthoplanes.	O
Figure (5-3):	MRI sagittal views without coils Grade 1 pelvic floor relaxation, gr cystocele, urethrocele	ade 2
Figure (5-4):	Severe uterine prolapse in a 41-ye woman. Sagittal images obtained	
Figure (5-5):	MRI in axial oblique view Endovaginal coils. Curved arrow sthe compressor urethrae	shows
Figure (5-6):	Intrinsic sphincter deficiency and a urethral sphincter at MR imaging in yrs. woman	n a 55
Figure (5-7):	Variable anatomic appearances urethral diverticula	s of
Figure (5-8):	Coronal MR views from MR scans pelvic floor in newly primiparous w demonstrating changes in puborectalis after delivery	omen the
Figure (5-9):	Axial views of puborectalis "bowing" a single vaginal delivery showing m downward bowing of the puborectali	' after arked
Figure (5-10):	(A) Symmetric pubococcygeus muscl 38 yrs woman without un dysfunction. Axial view shows n symmetric H shaped vagina	e in a rinary ormal

Fig. No.	Title Page	e No.
Figure (5-11):	Axial views show examples of grade 1, 2, and 3 unilateral defects. The score for each side is indicated on the figure, and the black arrows indicate the location of the missing muscle	•
Figure (5-12):	Sagittal images of the right hemipelvis,	124
Figure (5-13):	Axial views with Endovaginal coils show normal anatomy of urethra and its supporting structures in 34 yrs continent woman.	
Figure (5-14):	Axil view show complete disruption of the periurethral ligament in a 54 yrs woman with urethral hypermobility and incontinence.	
Figure (5-15):	Aixal views without coils show fascial defect of level III of DeLancey	
Figure (5-16):	Fascial defect of level I and II of DeLancey.	

List of Abbreviations

Abb.		Meaning
ATFP	Arcus tendineus fascia pelvic	
ATLA	Arcus tendineus levator ani	
UGH	Urogenital hiatus	
LA	Levator ani	
LH	Levator hiatus	
LMA	Longitudinal muscle of the anus	
LP	Levator plate	
MOS	Modified Oxford Scale	
MRI	Magnetic Resonance Imaging	
PCM	Pubococcygeus muscle	
PFM	Pelvic Floor Muscle	
PFD	Pelvic Floor dysfunction	
PUL	Pubouterthral ligament	
SUI	Stress urinary incontinence	
UI	Urinary incontinence	
UUI	Urge urinary incontinence	

INTRODUCTION

tress urinary incontinence (SUI) is defined as the involuntary leakage of urine on effort, exertion, sneezing, or coughing. Urodynamic SUI is defined as the involuntary leakage of urine during filling cystometry associated with increased intra-abdominal pressure in the absence of a detrusor contraction (Haylen et al., 2010). SUI is the most common cause of urinary incontinence in younger women and the second most common cause in older women (Fant et al., 1996).

Impairment of the pelvic floor and supporting structures due to aging, obesity, pregnancy, and vaginal delivery can lead to urinary incontinence by weakening the support on the urethra (Herzog and Fultz, 1990).

Weakening of the female pelvic floor results in abnormal descent of the urinary bladder, the uterovaginal vault, and the rectum, resulting in urinary incontinence, fecal incontinence, and pelvic organ prolapse. Pelvic floor weakening affects approximately 50% of women older than 50 years (Law and Fielding, 2008).

The pelvic floor is divided into three compartments. The anterior compartment contains the urinary bladder and the urethra; the middle compartment contains the uterus, cervix, and vagina; and the posterior compartment contains the rectum. The support for these structures arises from the attachment of

the muscles, fascia, and ligaments to the bony pelvis. The degree of distortion in the periurethral, paraurethral, and pubourethral ligaments, the vesicourethral angle, the retropubic space, and the thickness of the puborectal muscle should be precisely imaged for treatment selection (*Tasali*, 2012).

The specific anatomic defect in a specific patient with SUI should be defined using innovated imaging techniques for both diagnosis and treatment decision (Law and Fielding, *2008*).

Traditional imaging methods in assessment of pelvic floor weakness include urodynamics, voiding cystourethrography, ultrasonography of the bladder neck and anal sphincter, and fluoroscopic cystocolpodefecography. In the past decade, MRI has emerged as a competitor to these techniques in the assessment of pelvic floor dysfunction (Law and Fielding, 2008).

In recent years, MRI has been shown to be effective in revealing pelvic floor dysfunction. It allows concomitant visualization of all three compartments of the pelvic floor and at the same time allows direct visualization of the pelvic support muscles and organs (Law and Fielding, 2008).

With advances in technology. Endovaginal MRI (EV-MRI) is the best imaging technique to visualize the urethra and dynamic pelvic MRI (DP-MRI) helps determine the relaxation of the pelvic floor structures at rest and during Valsalva maneuver using ultrafast sequences (Kim et al., 2003).

The use of ultrafast T2-weighted sagittal MRI allows noninvasive dynamic imaging of the pelvic floor, providing anatomic and functional information that will be useful to urogynecologists and surgeons. In addition, the use of high resolution axial T2-weighted sequences of the pelvis allows identification of torn muscles and ligaments in patients with pelvic floor dysfunction who require surgery using of three lines, 1st the pubococcygeal line which extends from the inferior border of the pubic symphysis to the last joint of the coccyx and represents the level of the pelvic floor (Yang et al., *1991*).

The 2nd line is H line which is drawn from the inferior aspect of the pubic symphysis to the posterior wall of the rectum at the level of the anorectal junction representing the anteroposterior width of the levator hiatus. The 3rd is M line which is drawn as a perpendicular line dropped from the pubococcygeal line to the most posterior aspect of the H line and represent the vertical descent of the levator hiatus (Pelsang and Bonney, 1996).

These reference lines in the interpretation of the MR images are a simple method of identifying pelvic organ descent. For complete assessment of the severity of pelvic organ prolapse, MRI findings should be correlated with the severity of the patient's clinical symptoms (Law and Fielding, 2008).