The role of Trimetazidine in the Prevention of Contrast-Induced Nephropathy After Coronary Angiography Procedures

Thesis

Submitted for Partial Fulfillment of Master Degree of Cardiology

B_γ Tarek AbdelSalam AbdelFattah Ibrahim

M.B.B.Ch.

Under supervision of

Professor.Ramzy Hamed El-Mawardy

Professor of Cardiology-Cardiology Department Faculty of Medicine – Ain Shams University

Ass. Prof. Ahmed Shawky El-Serafy

Assistant Professor of Cardiology-Cardiology Department Faculty of Medicine – Ain Shams University

Dr. Ehab Mohammed El-Fekky

Lecturer of Cardiology-Cardiology Department Faculty of Medicine – Ain Shams University

Cardiology Department, Faculty of Medicine, Ain Shams University, 2016

سورة البقرة الآية: ٣٢

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Ramsey Hamed El-Mawardy**, Professor of Cardiology-Cardiology Department Faculty of Medicine – Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Assistant Prof. Dr. Ahmed Shawky El-Serafy, Assistant Professor of Cardiology-Cardiology Department Faculty of Medicine – Ain Shams University for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Ehab Mohammed El- Fekey,** Lecturer of Cardiology-Cardiology Department
Faculty of Medicine – Ain Shams University for his great help,
outstanding support, active participation and guidance.

Jarek Abdel Salam Abdel Fattah Ibrahim

List of Contents

Title	Page No.
List of Tables	5
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literatrue	
Contrast-induced nephropathy	6
Trimetazidine	
Patients and Methods	
Results	
Discussion	
Conclusion	
Recommendations	
Study limitation	
Summary	
References	
Master sheet	
Arabic summary	142

List of Tables

Table No.	Title	Page No.
Table (1):	Common risk factors for	
T 11 (0)	nephropathy after coronary angiogr	
Table (2):	Comparison between both trimetazidine (Group 1) and contr	groups
	(group 2) as regards age, general	-
	smoking.	
Table (3):	Comparison between the trime	
	group and the control group as	regards
	family history of premature CAD, I	
m 11 (4)	angina, PCI and CABG	
Table (4):	Comparison between trimetazidin and control group as regards histor	0 1
	(types I and II), hypertension, dysli	•
	PVD and CVS)	_
Table (5):	Comparison between trimetazidi	
	control groups as regards che	-
T 11 (0)	duration and presence of rest pain	
Table (6):	Comparison between the trimetazic control groups as regards the	
	examination including BP (syste	•
	diastolic), heart rate, body	
	peripheral pulse as well as card	
	chest examination.	
Table (7):	Comparison between the trimetazi	
Table (0).	control groups as regards imaging fi	
Table (8):	Comparison between trimetazidi control groups as regards serum cr	
	levels and creatinine clearance mea	
	hours before, after the procedure a	
	72 hours of performing the procedur	

List of Tables cont...

Table No.	Title	Page No.
Table (9):	Comparison between the trimetaz control groups as regards procede (route of entry and vascular contrast (type and amount), incidence of CIN	ural data lesions), and the
Table (10):	Comparison between the 2 group CIN occurred and those without regards age, gender and smoking s	ps where t CIN as
Table (11): (Comparison between CIN and no CI as regards family history of premarand ischemic history	IN groups ture CAD
Table (12):	Comparison between CIN and groups as regards CAD risk factors	no CIN
Table (13):	Comparison between CIN and groups as regards chest pain dura rest pain	no CIN ation and
Table (14): (Comparison between CIN and no CI	
	as regards vital data and examination	clinical
Table (15):	Comparison between CIN and groups as regards imaging findings	no CIN
Table (16):		between and the rocedural y, target

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Comparison between trimetazidine control groups as regards age	
Figure (2):	Comparison between trimetazidine control groups as regards gender	e and
Figure (3):	Comparison between trimetazidine control groups as regards eje	e and ection
Figure (4):	fraction	e and
Figure (5):	creatinine before the procedure	65 zidine
Figure (6):	creatinine clearance before the proce Comparison between the trimetar and control groups as regards s	dure 65 zidine
Figure (7):	creatinine 24 hours after the procedu Comparison between trimetazidine control group as regards creat	ıre66 e and
Figure (8):	clearance 24 hours after the procedu. Comparison between the trimetar and control groups as regards the s	re 66 zidine
Figure (9):	creatinine 72 hours after the procedu Comparison between the trimetar and control group as regards creat	zidine
Figure (10):	clearance 72 hours after the procedur Comparison between CIN and no groups as regards creatinine leve	re 67 CIN
Figure (11):	hours after the procedure Comparison between CIN and no	78 CIN
	groups as regards creatinine clearan hours after the procedure	

List of Figures cont...

Fig. No.	Title	Page No.
Figure (12):	Comparison between CIN and no groups as regards the creatinine lev	el 72
Figure (13):	hours after the procedure	CIN ce 72
Figure (14):	hours after the procedure Comparison between CIN and no groups as regards the pre-proced administration of trimetazidine	CIN dural
Figure (15):	Comparison between CIN and no groups as regards dye amount among both groups	CIN used

List of Abbreviations

Abb.	Full term
ACE	Angiotensin converting enzyme
	Acute kidney injury
	Angiotensin receptor blocker
	Acute renal failure
AS	Aortic stenosis
ATP	Adenosine triphosphate
	Blood pressure
	Coronary artery bypass grafting
	Coronary artery disease
CHF	Congestive heart failure
CI-AKI	Contrast induced acute kidney injury
CIN	Contrast induced nephropathy
CM	Contrast media
COX	Cyclooxygenase
	Computed tomography
	Connective tissue growth factor
	Cerebrovascular stroke
	Diabetes mellitus
ECG	Electrocardiography
	Estimated glomerular filtration rate
ET-1	
	Hydrogen peroxide
HF	
HOCM	High-osmolar contrast media
HR	
IV	
	Left anterior descending artery
	Left circumflex artery
	Left main trunk
	Low-osmolar contrast media
	Left ventricular end-diastolic volume
	Left ventricular ejection fraction
LVESV	Left ventricular end-sytolic volume

List of Abbreviations cont...

Abb.	Full term
MI	Myogardial infanction
	Myocardial infarction
	Mitral regurgitation
	Multivessel disease
	N-acetylcysteine
	Sodium chloride
	Sodium bicarbonate
NO	
	Non-steroidal anti-inflammatory drugs
NYHA	New York Heart Association
O2	Superoxide radical
OH	Hydroxyl radical
OM	Obtuse marginal
PCI	Percutaneous coronary intervention
PVD	Peripheral vascular disease
RCA	Right coronary artery
	Randomized controlled trials
ROS	Reactive oxygen species
RR	Relative risk
SCr	Serum creatinine
SFA	Superficial femoral artery
TMZ	
TR	Tricuspid regurgitation
TRT	Targeted renal therapy
Vs	

Abstract

The reported incidence of CIN following percutaneous coronary intervention lies between 0 and 24%. This depends on the associated risk factors, with the greatest incidence being reported after emergency PCI.

Patients who develop CIN have greater complications, a worse prognosis, more serious long-term outcomes, and longer duration of hospital stay. Hospital mortality rates in such patients have been reported as 36% and the two-year survival rate as only 19%. Following PCI, CIN is linked to higher incidence of cardiogenic shock, pulmonary edema and need for target vessel revascularization after one year.

The pathophysiology of CIN encompasses multiple interacting mechanisms. They include induced vasospasm of the renal vessels where the medulla is already relatively hypoxic, direct cytotoxic effects on renal cells and indirect damage through the generation of oxygen free radicals.

Keywords: Aortic stenosis- Coronary artery disease- Cyclooxygenase-Cerebrovascular stroke- Electrocardiography- N-acetylcysteine

Introduction

ontrast induced nephropathy (CIN) may be defined as acute renal failure (ARF) that occurs within 24-72 hours of exposure to I.V. or intra-arterial iodinated contrast media that cannot be attributed to other causes. In most cases it is a non-oliguric ARF with an asymptomatic transient decline in renal function. [1]

The renal function impairment is mirrored by an absolute increase by 0.5 mg/dl (or greater) or relative increase by 25% (or greater) of serum creatinine from baseline or better by a decrease in urine output to 30-60ml/min.

The rise in serum creatinine is peaking on the third to fifth day post-contrast exposure returning to baseline within 10-14 days. [2]

CIN occurs in up to 5% of hospitalized patients with normal renal function prior to injection of contrast media. [3]

It occurs more frequently in patients with renal impairment particularly if associated with diabetic nephropathy. [4]

Among all procedures utilizing contrast agents for either diagnostic or therapeutic purposes, coronary angiography and percutaneous coronary interventions are associated with the highest rates of CIN. [5]

This is mainly related to:

- Intra-arterial injection.
- High dose of contrast used.
- Type of patients who are usually in advanced age with one or more comorbid conditions such as advanced vascular disease, severe long standing hypertension, diabetes and some renal function impairment. [6]

It has been demonstrated that the use of low-osmolar contrast media (LOCM) rather than high-osmolar contrast media (HOCM) is beneficial in reducing the incidence of CIN in patients with pre-existing renal failure.

Adverse reactions to contrast media with occurrence of CIN range from 5% to 12% for HOCM and for 1-3% for LOCM. [7-10]

The European Society of Urogenital Radiology has stated that the real risk of CIN are represented by the presence of pre-existing renal impairment particularly when secondary to diabetic nephropathy, but also to salt depletion and dehydration, congestive heart failure, an age greater than 79 years and concurrent use of nephrotoxic drugs. [11-12]

It is necessary to use precautions to prevent contrast media induced nephrotoxicity. [13-16]

r renal function by

The first precaution is to monitor renal function by measuring serum creatinine before and daily for 5 days after contrast injection. [17]

The second precaution is to discontinue the nephrotoxic drugs (aminoglycosides, vancomycin, amphotericin B, metformin & non-steroidal anti-inflammatory) drugs before the procedure. [18]

The third precaution is adequate hydration of the patient. [19-20]

IV infusion of 0.9% saline at a rate of about 1ml/kg body weight per hour beginning 6-12 hours before the procedure and continuing for 12-24 hours after the procedure. [17]

The fourth precaution is choosing LOCM to be the contrast of choice. [21]

The fifth precaution is the use of anti-oxidants as N-acetyl cysteine [22], ascorbic acid [23] and statins. [24]

Recently, Trimetazidine has been described as a cellular anti-ischemic agent. [25]

Previous studies demonstrated that Trimetazidine prevents the deleterious effects of ischemia-reperfusion at both the cellular and mitochondrial levels and exerts an anti-oxidant effect. [26]

It inhibits excess release of oxygen free radicals, limits cellular acidosis, protects ATP stores, reduces membrane lipid peroxidation and inhibits neutrophil infiltration. [27]

The administration of Trimetazidine (35 mg twice daily) is an effective way for preventing transient renal dysfunction due to radio-contrast agents.