GENETIC STUDIES ON PRODUCTION OF SOME SECONDARY METABOLITES IN MEDICINAL PLANTS

By

MONA MOHAMMAD MOGHAZEE ALI

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2005

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

2011

GENETIC STUDIES ON PRODUCTION OF SOME SECONDARY METABOLITES IN MEDICINAL PLANTS

By

MONA MOHAMMAD MOGHAZEE ALI

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2005

Under the supervision of:

Dr. Fatma Mohamed Ibrahim Badawy

Associate Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Sherif Edris Ahmed

Assistant Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

صفحة الموافقة على الرسالة دراسات وراثية على إنتاج بعض المركبات الثانوية في النباتات الطبية

رسالة مقدمة من محمد مغسازي علمي دراز بكالوريوس علوم زراعية (وراثة)، جامعة عين شمس، ٢٠٠٥

للحصول على درجة الماجستير في العلوم الزراعية (وراثة) وقد تمت مناقشة الرسالة والموافقة عليها اللجنة:

د. سامى عبد العزيز عافيه

استاذ باحث الوراثة، مركز بحوث الصحراء
د. إيمان محمود فهمي
استاذ الوراثة، كلية الرزاعة، جامعة عين شمس
د. فاطمه محمد بدوي
استاذ مساعد الوراثة، كلية الزراعة، جامعة عين شمس

تاریخ المناقشة ۱۱ / ۶ / ۲۰۱۱

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالبـــة : منى محمد مغازي علي دراز

عنوان الرسسالة : دراسات وراثية على إنتاج بعض المركبات الثانوية في

النباتات الطبية

اسم الدرجـــة : ماجستير في العلوم الزراعية (وراثة)

لجنة الإشراف:

د. فاطمة محمد بدوي إبراهيم الوراثة، كلية الرزاعة ، جامعة عين شمس (المشرف الرئيسي)

د. شریف إدریس أحمد مدرس الوراثة ، قسم الوراثة ، كلیة الرزاعة ، جامعة عین شمس

تاریخ التسجیل: ۲۰۰٦/۹/۱۱

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ 2011/ ٤ /٢٠

موافقة مجلس الكلية موافقة مجلس الجامعة 2011 / / 2011

ABSTRACT

Mona Mohammed Moghazee Ali. Genetic Studies on Production of some Secondary Metabolites in Medicinal Plants. Unpublished M.Sc. Thesis, Ain-Shams University, Faculty of Agriculture, Department of Genetics, 2011.

The Madagascar periwinkle *Catharanthus roseus* (L.) G. Don (Apocynaceae) produces a wide range of monoterpenoid indole alkaloids (MIAs). Some of these secondary metabolites possess therapeutical value. Monomeric MIAs, ajmalicine and serpentine are used in the treatment of hypertension, while the dimeric MIAs, vincristine and vinblastine, are powerful anti-cancer drugs in widespread use in cancer chemotherapy. Tissue culture of *C. roseus* has been considered to be sources of medicinally important MIAs, but have suffered from low productivity.

A protocol for the establishment of *in vitro* tissue cultures of *C. roseus* is described. Callus was initiated from mature leaf explants on MS medium supplemented with source at a concentration of 30 g/L and 1 mg/L of 2, 4 D + 0.1 mg/L of Kinetin, which proved to be more appropriate for callus induction and growth of the Egyptian *C. roseus* and routinely used in this study for callus production and as a control medium in the different treatment experiments. Cultures were incubated in 16 light and 8 dark at 22-25°C. All culture media used in this study were adjusted to pH= 5.6 - 5.8 before solidification with 0.2% gel rite.

In this study, three different sucrose concentrations (40, 50, and 60 g/L) and three concentrations of benzyl adenine (0.1, 0.2 and 0.4mg/L) in addition to two concentrations of jasmonic acid (10 μ M and 100 μ M) were studied to determine their influence on growth and alkaloid formation in *C. roseus* callus cultures. In HPLC analysis, all samples didn't show vinblastine sulphate peak, but the most promising point in this study is the existence of different alkaloid compounds in the extracts of several treatments which need extensive chemical studies to know the type of compounds and their biological activities.

Real time quantitative RT-PCR using SYBR Green I assay was used to analyze the changes in expression of the three of *C. roseus* genes (Str1- tdc and cyp72A1) in response to different media additives (different concentrations of sucrose, banzyl adenine and Jasmonic Acid). Cyp72A1 showed maximum folding of gene expression (4.2) between treated and untreated callus under BA (0.2 mg/L benzyl adenine) treatment. This manifesteted the influence of BA in up-regulating this gene. Str1 gene under Ja2 treatment showed minimum folding (0.3) between treated and untreated callus. The remaining genes represented comparable expression in all treatments. Str1 gene was up-regulating in all treatments except 4 % sucrose treatment (0.7) and as mentioned before Ja2 treatment (0.3), and about tdc gene, it was up-regulated all treatments except 4% sucrose (0.9), while *cyp72A1* gene was up-regulated in all treatments. The results showed that differential gene expression can be detected unequivocally by real time PCR with SYBR Green I assay. It also demonstrated the sensitivity of the assay and its ability to detect subtle changes in gene expression.

Key Words: *Catharanthus roseus* (L.) G. Don, Tiusse culture, alkaloids, benzyl adenine, Jasmonic Acid, RT-PCR, up-regulating, *Str1-tdc* and *cyp72A1* genes

ACKNOWLEDGEMENT

First and foremost, I'm indebted to ALLAH forever, the most beneficent and merciful for all the favors and for prosperity and patience to achieve this study.

I wish to express my sincere thanks, deep gratitude and sincere appreciation to **Dr. Fatma Badawy** Associate Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University for her supervision valuable advice, helpful criticism and fruitful suggestions throughout the progress of the study and during preparation and writing of the manuscript.

I would like to express my deep gratitude to **Dr. Sherif Edris,** Assistant Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University for his close supervision and personal and scientific help during the period of this study and in writing the manuscript.

I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. Saied Hassan Hussein** Prof. of Genetics, **Professor Dr. Ahmed Bahieldin** Prof. of Genetics, and **Professor Dr. Fotouh El-Domyati** Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University for their kindness, supervision, valuable advices and their help to choose this point and provide all the lab facilities needed to accomplish this work.

I would like to express my deep gratitude to **Dr. Ibrahim Seif-Eldin Ibrahim** Professor of plant physiology, Agricultural Botany Department, Faculty of Agriculture, Ain Shams University for his close supervision and both personal and scientific support in tissue culture part. Thank also for **Dr. Ahmed Abdel-Fattah Hassan** and **Miss. Sherin**, National Research Center, Marin biology and natural products Lab., for achieving the HPLC part.

Dr. Sabah Hassan Mahmoud Associate Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University for

her valuable advice and fruitful suggestions throughout the progress of the study

Finally, Thanks to all staff members of The Department of Genetics, Faculty of Agriculture, Ain Shams University, for their sincere help and advice during the progress of this work.

I wish to express my great thanks to Academy of **Scientific Research & Technology** (Ministry of Scientific Research) for the part of financial support to make this study.

Finally, I am deeply indebted to my parents, specifically My Mother, my sister Fatama and brother Ibrahim, to all my best friends; Marwa EL-Attar, Marwa Mohammed, Nermeen Samir and Heba Eldesoky for their continuous support, and encouragement

Approval Sheet

GENETIC STUDIES ON PRODUCTION OF SOME SECONDARY METABOLITES IN MEDICINAL PLANTS

By

MONA MOHAMMAD MOGHAZEE ALI

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2005

This thesis for M.Sc. degree has been approved by:

Date of Examination: / / 2011

Dr.	Sami Abdul Aziz Afia	
	Research Prof. of Genetics, the Dese	ert Research Centre
Dr.	Eman Mahmoud Fahmy	
	Prof. of Genetics, Faculty of Agricul	Iture, Ain Shams University
Dr.	Fatma M. Badawy	
	Associate Prof. of Genetics, Faculty of Agriculture, Ain	
	Shams University	

TABLE OF CONTENTS

TABLE	OF CONTENTS
I .INTRODUCTION	Error! Bookmark not defined.
II. REVIEW OF LITERATU	RE
1 The value of plant natural p	roducts²
2 Production of secondary me	tabolites from medicinal plants°
3 Usefulness of the In Vitro pla	ant cell system-based technology8
	ndary metabolite productivity of9
4.1 Optimization of culture cond	ditions and media components9
4.2 Addition of precursors	Error! Bookmark not defined.
4.3 Use of chemical elicitor	Error! Bookmark not defined.
4.4 Biotransformation	Error! Bookmark not defined.
5 Alkaloid biosynthesis in plar	nts Error! Bookmark not defined.
source for pharmaceu	tharanthus roseus L.): A biological tically and economically important
•	athus alkaloid biosynthesis
	ranthus alkaloids
•	f Catharanthus rosues . Error! Bookmark
7 Polymerase chain reaction	26
7.1 Reverse transcription-polym	erase chain reaction26
7.2Real time (quantitative) poly	merase chain reaction (qPCR)27
III. MATERIALS AND MAT	HODS Error! Bookmark not defined.
1 Materials	Error! Bookmark not defined.
1.1 Plant Materials	Error! Bookmark not defined.
2 Methods	Error! Bookmark not defined.
3.1 Preparation of Plant Materia	ls Error! Bookmark not defined.
2.2 Culture conditions	Frror! Rookmark not defined

2.3 Callus initiation and treatments Error! Bookmark n	ot defined.
2.4 Measurement of Dry Weight Percentage of Fresh Cell32	
2.5 Alkaloid extraction and quantification	33
2.5.1 Chemicals	٣٣
2.5.2 Equipment.	٣٣
2.5.3 Samples extraction and preparation.	٣٤
2.5.4 HPLC conditions	34
2.6 DNA extraction.	35
2.6.1 Quality check and quantitation of DNA:	30
2.7 Agarose gel electrophoresis	٣٦
2.7.1 Preparation of agarose gel	٣٦.
2.7.2 Loading of DNA on gel	36
2.7.3 Electrophoresis of the gel	36
2.7.4 Gel examination.	36
2.8 Polymerase Chain Reaction (PCR)	37
2.8.1 Template DNA	37
2.8.2 Primer design	37
2.8°. Primer concentration:	37
2.8.4 Checking amplification and specificity of primers	38
2.8.°. PCR Reaction	38
2.8.6 Optimization of PCR conditions	39
2.9 Preparation of DEPC water	39
2.10 RNA extraction	40
2.10.1 DNase treatment	40
2.10.2 Electrophoresis of RNA	41
2.11 Two-step real-time quantitative RT-PCR	42
2.11.1 cDNA synthesis Error! Bookmark n	ot defined.

2.11.2 Real-time qPCR	42
2.11.3 Data analysis	42
III. RESULTS AND DISCUSSION	٤0
\ Establishment of tissue culture system in Egyptian Catharanthu. roseus	
1.1 Aseptic seed germination	47
1.2 Selecting explant material	48
1.3 Optimization of culture conditions and media components	50
1.3.1 Effect of different sucrose concentrations on C. roseus callus gro	
Error! Bookmark not defi	ned.
1.3.2 Effect of hormone balance on <i>C. roseus</i> callus growth	52
2 Treatments to increase Catharanthus alkaloids productivity	54
2.1 sucrose treatments.	55
2.2 Benzyl adenine treatments	55
2.3 Jasmonic acid treatments Error! Bookmark not defi	ned.
3. HPLC analysis	57
4. Molecular analysis	60
4.1 Primer design and specificity	60
4.2 Optimization of PCR conditions Error! Bookmark not defi	ned.
4.3 Selection of the endogenous reference gene	٠٦٠
4.4 Determination of amplification efficiency	٦٣
4.5 Quantification of gene expression	٦٤
4.6 Regulation of <i>str1</i> gene expression under different treatments	٦٦
4.7 Regulation of <i>tdc</i> gene expression under different treatments Er Bookmark not defined.	ror!
4.8 Regulation of <i>cyp72A1</i> gene expression under different treatments Error! Bookmark not defi	
IV. SUMMARY	V £
V. References	٧٩

LIST OF TABLES

Table (1): Primer sequences of target genes and endogenous genes used for real-time PCR. 38
Table (2): Effect of sucrose concentrations on C.roseus callus
Table (3): Effect of different combinations of plant growth regulators on C. roseus callus growth
Table (4): C _T values of three target genes and <i>CrActin</i> for treated and control of <i>Catharanthus roseus</i> calli. Each C _T value represents mean of three replicates
Table (5): ΔΔC _T values and folding levels of <i>str1</i> gene for treated and control calli of <i>c. roseus</i> Error! Bookmark not defined.
Table (6) : The level of tdc gene expression between treated and untreated (control) of c . roseus determined by the comparative $\Delta\Delta C_T$ method
Table (7) : The level of $cyp72AI$ gene expression between treated and untreated (control) of $c.$ roseus determined by the comparative $\Delta\Delta C_T$ method Error! Bookmark not defined.

LIST OF FIGURES

Figure (1): Terpenoid indole alkaloid biosynthetic pathway in C. roseus
Figure (2): A typical amplification plot obtained with a real-time PCR assay28
Figure (3): catharanthus roseus varieties: (a) var. albus (b) var. roseus (c) var. ocellatus
Figure (4): Sterilized seedlings of Egyptian <i>Catharanthus roseus</i> grown on half-strength of solid basal MS medium
Figure (5): Explant types used (a) hypocotyl (b) cotyledons and (c) mature leaf sections in two different types of fragmentation49
Figure (6): Healthy calli with good size, shape and color produced using transversal leaf sections as explants
Figure (7): Effect of different sucrose concentrations on colour, size and the degree of compaction of the <i>C. roseus</i> callus51
Figure (8): Effect of different combinations (M1 for 1mg/L 2,4D + 0.1 mg/L kin and M2 for 1mg/L 2,4D + 0.1 mg/L BA) of plant growth regulators on callus growth53
Figure (9): Effect of three concentrations of sucrose (S1, S2 and S3) on callus performance comparing with control
Figure (10): Effect of three concentrations of benzyl adenine (BA1, BA2 and BA3) on callus performance
Figure (11): Effect of two concentrations of jasmonic acid (Ja1 and Ja2) on callus performance
Figure (12): The HPLC chromatograms of standard vinblastine sulphate.
Figure (13): The HPLC chromatograms of extracted alkaloids from sucrose treated calli comparing with control Error! Bookmark not defined.

Figure (14): The HPLC chromatograms of extracted alkaloids from benzyl adenine treated calli comparing with control59
Figure (15): The HPLC chromatograms of extracted alkaloids from jasmonic acid treated calli comparing with control Error! Bookmark not defined.
Figure (16): A representative view of the amplification plot generated to determine the expression of candidate endogenous reference gene (<i>CrActi</i> n)
Figure (17): qPCR reaction products for the target genes (<i>str1</i> , <i>tdc</i> and <i>cyp72A1</i>) and the reference gene (<i>CrActin</i>) under for treated and untreated calli
Figure (18) The folding levels of <i>str1</i> gene between treated and untreated (control) of <i>c. roseus</i>
Figure (19): The folding levels of <i>tdc</i> gene expression between treated and untreated (control) of <i>c. roseus.</i> Error! Bookmark not defined.
Figure (20): The folding levels of <i>cyp72A1</i> gene expression between treated and untreated (control) of <i>c. roseus.</i> Error! Bookmark not defined.
Figure (21): The folding level of gene expression for three target genes <i>str1</i> , <i>tdc</i> and <i>cyp72A1</i> between treated and untreated (control) of <i>c. roseus</i> under sucrose treatments Error! Bookmark not defined.
Figure (22): The folding level of gene expression for three target genes str1, tdc and cyp72A1 between treated and untreated (control) of c. roseus under BA treatments Error! Bookmark not defined.
Figure (23): The folding level of gene expression for three target genes str1, tdc and cyp72A1 between treated and untreated (control) of c. roseus under ja treatments Error!