

Prevalence of Depression In Patients After Primary PCI Attending Cardiac Rehabilitation Program

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

By

Seham Rhoma Abdulla

MBBC (AL Arab)
Faculty of Medicine - University of Benghazi

Under supervision of

Prof. Dr Osama Mohamed Hassan

Professor of Cardiology
Faculty of Medicine –Ain Shams University

Ass. Prof. Mohamed Atef Hamza

Assistant professor of cardiology Faculty of medicine – Ain Shams University

Dr. Adel Mohamed Shabana

Lecturer of Cardiology Medicine, Ain Shams University

Faculty of medicine
Ain Shams University
2016

Acknowledgement

First of all, I always like to thank *Allah*, who help us to know and learn.

I wish to express my deep gratitude to *Prof. Dr Osama Mohamed Hassan, Professor of cardiology, Faculty of medicine –Ain Shams university.* for his carful supervision, kind guidance and great help.

I am deeply grateful and thankful Ass. Prof. Mohamed Atef Hamza, Assistant professor of cardiology, Faculty of medicine – Ain Shams university for his cooperation and support to accomplish this work

I offer my warmest thanks to *Dr. Adel Mohamed Shabana, Lecturer of cardiology, Medicine, and Ain Shams University.* for his sincere help and continuous advice and support.

I shouldn't miss the chance to thank all Staff members of Cardiac Rehabilitation, Ain Shams University for the help and facilities they offered during the course of this study

Finally, I would like to thank my husband and my parents for their care and endless support in every step of my life.

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Introduction	1
Aim of the study	4
Literature of review:	
Chapter (1): Myocardial infarction (MI)	5
Chapter (2): Major Depressive Disease	
Chapter (3): Bidirectional Effect of Both Myocard	
& Depression	50
Patients and Methods	64
Results	74
Discussions	90
Study limitations	101
Summary	102
Conclusion	104
Recommendation	105
References	107
Appendix	146
Arabic summary	

Tist of Abbreviations

Abb. Full Term

ACCF American College of Cardiology

Foundation

ACI Angiotensin converting enzyme inhibitor

ADLs Activities of daily living

AHA/ACC American College of Cardiology/

American Heart Association

BB Beta blocker

BBB Bundle branch block

BDI Beck Depression Inventory

BMS Bare metal stents

CARISMI Cardiac Arrhythmias and Risk Stratification

After Myocardial Infarction

CABG Coronary artery bypass grafting

CBT Cognitive Behavioral Therapy

CCS Canadian cardiovascular society

CHD Coronary heart disease

CR Cardiac rehabilitation

CREATE Canadian Cardiac Randomized Evaluation of

Antidepressant and Psychotherapy Efficacy

cTn Cardiac troponin

CVA Cerebrovascular accident

CVD Cardio vascular disease

D2B Door -to-balloon times

List Of Abbreviations

DAPT Dual antiplatelet therapy

DASS 21 Depression Anxiety Stress scale 21

DES Drug eluting stent

DSM-5 Diagnostics and Statistical Manual of

Mental Disorders, Fifth Edition'

ECA Epidemiologic Catchment Area

ECG Electrocardiographic

ENR ICHD Enhancing Recovery in Coronary Heart

Disease

ESC European Society of Cardiology

FT Fibrinolytic therapy

HADS Hospital Anxiety and Depression Scale

HRV Heart rate variability

ICH Intracranial hemorrhage

IP Interpersonal

LD late-life depression

LVT Left ventricular mural thrombus

MACE Major adverse cardiovascular events

MDD Major depressive disorder

MI Myocardial infarction

NHFA National Heart Foundation of Australia guidelines
NHLBI National Heart, Lung and Blood Institute
NHMRC National Health and Medical Research Council

NICE National Institute for Health and Care Excellence

NO Nitro oxide

List Of Abbreviations

NYHA New York Heart Association

PCI Percutaneous coronary intervention

PD Psychodynamic

PHQ-9 Patient Health Questionnaire-9

P-PCI Primary Percutaneous Coronary Intervention

PRIME-MD Primary Care Evaluation of Mental Disorders

PSD Post stroke depression

RCTs Randomized controlled trials

RR Relative risk

SAD HART Sertraline Antidepressant Heart Attack

Randomized Trial

SES Socio anomic state

STEMI ST elevation myocardial infarction

SSRI Selective serotonin reuptake inhibitors

TLR Target lesion revascularization

URL Upper reference Limit

USPSTF US Preventive Services Task Force

VaD Vascular depression

99mTc Technetium (99mTc) sestamibi

Tist of Tables

Table M	o. Title	Page No.
Table (1):	Reperfusion Therapy	15
Table (2):	Patient Health Questionnaire (PHQ) Family	of Measures 37
Table (3):	Shown patient health questionnaire-9	39
Table (4):	Depression Medication Treatment Durati Episode	
Table (5):	PHQ-9 in Arabic:	69
Table (6):	Interpretation of Total Score	71
Table (7):	Characteristics of the studied patients	74
Table (8):	Site of Myocardial Infarction in the studied pa	atients75
Table (9):	Distribution of patients according to C classification	
Table (10)	: ECG and Echo finding in the studied patient	s76
Table (11)	Risk factor among our patient (Diabetes, Hy Dyslipidemia) and Smoking Practice in the students	• •
Table (12)	:History of CVA, FH of same illness and me in the studied patients	•
Table (13)	Blood pressure in the studied patients and A	-
Table (14)	:Laboratory investigations in the studied patie	ents78
Table (15)	Rehabilitation visit in the studied patients	79
Table (16)	:Mean Depression score as measured by studied patients	
Table (17)	Prevalence of Depression in the studie measured by PHQ9 depression screening too	-

List Of Tables

•	Comparison between depressed and non-depressed patients as regard Age, No. of Siblings, gender, marital status and work status
, ,	Comparison between depressed and non-depressed patients as regard site of myocardial infarction82
	Comparison between depressed and non depressed patients as regard History of CVA, FH of same illness and Menstrual History
	Comparison between depressed and non depressed patients as regard Diabetes, Hypertension, Dyslipidemia, Smoking status, type of smoking and Pack*Year83
•	Comparison between depressed and non-depressed patients as regard Weight, Height, body mass index (BMI),waist circumference(WC)
	Comparison between depressed and non-depressed patients as regard Laboratory investigations
, ,	Comparison between depressed and non-depressed patients as regard ECG and Echo Findings85
	Comparison between depressed and non-depressed patients as regard Canadian class
	Comparison between depressed and non depressed patients as regard Systolic BP, Diastolic BP and pulse rate86
, ,	Comparison between depressed and non-depressed patients as regard time reffred to Rehabilitation unit
	Logistic regression displaying predictors of Depression in the studied patients

List of Figures

Figure No.	Title	Page No.
Figure (1): Criteria for	diagnosis of MI	13
•	ts of delay in STEMI and	
Figure (3): Shown DA	.SS 21	43
_	ehabilitation Clinic at	
	of Depression in the y PHQ9 depression scree	-
•	on between depressed and ender	• •
•	on between depressed and anadian class	• •
	n between depressed and ystolic BP	
	n between depressed and iastolic BP	
_	on between depressed regard time reffered to Re	_

INTRODUCTION

Depression and coronary artery disease have a bidirectional relationship, i.e., coronary artery disease can cause depression and depression is an independent risk factor for coronary artery disease and its complications; depression may not only contribute to unhealthy lifestyle and poor adherence to treatment, but also increases all causes of cardiac mortality (*Kuller et al.*, 2006).

The World Health Organization estimates that cardiovascular disease and depression are currently the two most common causes of disability in high-income countries (*Sipötz et al.*,2013).

CAD continues to be a major focus of clinical and epidemiological research, where non-modifiable cardiovascular risk factors, such as age, gender, family history, and race, as well as modifiable risk factors, such as hypertension, weight, smoking, sedentary lifestyle, abnormal lipid profiles, inflammatory markers, diabetes, metabolic syndrome, and subclinical CAD, are associated with increased cardiovascular risk (*Almdal et al.*, 2004).

Despite these findings, typically measured risk factor do not fully account for all the variation in outcomes .A number of psychological states and traits, such as depression, anxiety, anger, and stress, have also been implicated as potential risk factors for CAD (*Baumeister et al.*, 2015).

One study found that even mild symptoms of depression can predict mortality, morbidity and poorer clinical outcomes in those with myocardial infarction (*Lespérance et al.*, 2007).

Depression is associated with endothelial dysfunction, which in turn can cause or worsen a coronary artery event. (*Davidson et al.*,2006).

In CVD patients who are depressed, hyperactivity of the noradrenergic system is one important possible mechanism that may explain the association between depression and CAD .Sympathetic outflow is increased in depressed patients as compared to non-depressed patients through negative stress effects of catecholamine on the heart, blood vessels, and platelets (*Angela et al.*, 2009).

Treating depression is critical in patients with CAD for several reasons. Reducing emotional distress in the short-

term may improve long-term mortality in patients with CHD (*Denollet and Brutsaert.*, 2001).

Liaison between psychiatrists and general practitioners, where psychiatrists give advice to the general practitioners, was helpful in reducing the depressive symptoms of patients with CVD (*Gilbody et al.*, 2007).

Consequently, treating depression in the context of CVD is important. There are many benefits associated with treating depression including improved quality of life, improved adherence to other therapies and, potentially, improved CVD outcomes (*Gulliksson et al.*, 2011; *Goldstein* .,2013).

AIM OF THE WORK

The prevalence of Depression in Egyptian patients with documented CAD (post primary PCI) undergoing cardiac rehabilitation program. And describe the demographic and clinical characteristics of the patients attending the Cardiac Rehabilitation Clinic - Ain Shams hospital as out patients.

Chapter (1)

Myocardial Infarction (MI)

The definition of MI requires cardiac myocyte necrosis with an increase and/or a decrease in plasma of cardiac troponin (cTn). At least one cTn measurement should be greater than the 99th percentile normal reference limit during: (1) symptoms of myocardial ischemia; (2) new (or presumably new) significant ECG ST-segment/T-wave changes or left bundle branch block; (3) the development of pathological electrocardiographic (ECG) Q waves; (4) new loss of viable myocardium or regional wall motion abnormality identified by an imaging procedure; or (5) identification of intracoronary thrombus by angiography or autopsy (*Alpert et al.*, 2012)

Types of MI

The Joint ESC/ACCF/AHA/WHF Task Force further classified MI into 5 types on cause (*Jaffe.*, 2013)

• Type 1 (spontaneous MI): Related to atherosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection with intraluminal thrombus in one or more of the coronary

arteries, leading to decreased myocardial blood flow or distal platelet emboli and thereby resulting in myocyte necrosis. The patient may or may not have underlying obstructive coronary artery disease (CAD).

- Type 2 (MI secondary to an ischemic imbalance): MI consequent to increased oxygen demand or a decreased supply (eg, coronary endothelial dysfunction, coronary artery spasm, coronary artery embolus, tachyarrhythmia/ Brady arrhythmias, anemia, respiratory failure, hypertension, or hypotension).
- Type 3 (MI resulting in death when biomarker values are unavailable): Sudden, unexpected cardiac death before blood samples for biomarkers could be drawn or before their appearance in the circulation.
- Type 4a (MI related to percutaneous coronary intervention [PCI]): Elevation of biomarker values (cTn is preferred) to more than 5 times in patients with normal baseline values or a rise of values over 20% if the baseline values are elevated but stable or falling. In addition, any of the following are required: (1) symptoms suggestive of myocardial ischemia; (2) new ischemic ECG changes or new BBB; (3) angiographic loss of patency of a major