AQUARETICS AND NATRIURETICS CURRENT THERAPEUTIC USES AND FUTURE PROSPECTIVES

Essay

Submitted for Partial Fulfillment of Master Degree in Nephrology

By

RAHEEM MOHAMED SAMY MAHFOUZ HANA

M.B.B.Ch M.Sc. Internal Medicine

Supervised By

Professor Doctor/

Howaida Abdelhamid El Shinnawy

Professor of Internal Medicine-Nephrology Unit Faculty of Medicine - Ain Shams University

Professor Doctor/

Essam Nour Eldin Afify

Assistant Professor of Internal Medicine - Nephrology Unit Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2016

Acknowledgement

First and forever, thanks to **Allah** for helping me to complete this work and for everything else.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Howaida Abdelhamid & Shenawy**, Professor of Internal Medicine-Nephrology Unit, Ain Shams University for her great support and true encouragement and keen interest in the progress and accomplishment of this work. She generously devoted much of her great experience and provided unlimited support, effort and in depth guidance.

My sincere thanks and deep appreciation goes to **Dr. Essam Mour Eldin Afify,** Assistant Professor of Internal Medicine - Nephrology Unit, Ain Shams University for his close and kind supervision, constructive criticism, meticulous revision of the thesis and continuous advice throughout the work, I am thankful for all the time and effort he gave me.

Many thanks to **My family** for their support and their patience until I finished this work.

Raheem Mohamed Samy Mahfouxz Hana

List of Contents

Title	Page No.
List of Tables	4
List of Figures	5
List of Abbreviations	6
Introduction	1
Aim of the Work	3
Hyponatraemia	4
I- Basic principles of sodium and water ed	quilibrium:5
II- Plasma sodium and water equilibrium, factors:	_
III- Clinical features of hypontremia	
Management of Hyponatremia	
Management Steps:	19
I- Causes and confirmation of true hypone	atremia19
II- Duration: Acute versus chronic hyponare	mia21
III- Lines of treatement of hyponatremia	22
IV- Facotrs affect the choice of therapy for hyp	oonatremia25
Summary of steps in correcting hyponatren	nia28
Acute Decompensated Heart Failure	36
Diuretics, Aquaretics, and Natriuretics	42
Summary and Conclusion	94
References	97
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Classification of symptoms of hyp	oonatremia18
Table (2):	Summary of steps in hyponatremia	•
Table (3):	Vasopressin receptor location and	d functions50
Table (4):	Biological actions of atrial natriuretic peptides.	

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Sensing mechanisms that initiate maintain renal sodium and retention in various clinical condition which arterial underfilling, resultant neurohumoral activation renal sodium and water retention caused by a decrease in cardiac outpound by systemic arterial vasodilation	water ons in with and on, is out (A)	16
Figure (2):	Adaptation of the brain to hypotonic	ty	18
Figure (3):	Clinical approach to hyponatremia s as a flow diagram after initial present		19
Figure (4):	Algorithm for causes of hyponatremi	a	20
Figure (5):	Algorithm for treatment of patients euvolemic hyponatremia based on		
	presenting symptoms		31
Figure (6):	Treatment options for patients chronic symptomatic systolic heart fa (NYHA functional class II–IV)	ailure	37
Figure (7):	Algorithm for management of A (acute pulmonary oedema/congestion		39
Figure (8):	Vasopressin V2 receptor activation		
Figure (9):	Diagram illustrating roles of channels in the process responsible accumulation of urea in renal	urea le for	
	medulla		64
Figure (10):	Simplified schematic of the natrice		70
Figure (11):	Amino acid structures of des natriuretic peptides (NP).	igner	
Figure (12):	Algorithm for using BNP testin diagnosis of congestive heart failure.	g in	

List of Abbreviations

Abb. Full term

AA	Amino acid
ACEI	Angiotensin converting enzyme inhibitors
ADH	Antidiuretic hormone
ADHERE	Acute decompensated heart failure registry
ADHF	Acute Decompensated heart failure
ADM	Adrenomedullin
ADPKD	Autosomal dominant polycystic kidney disease
AMPc	Adenosine monophosphate (cyclic)
Ang	Angiotensin
ANP	Atrial natriuretic peptide
AQ2	Aquaporin 2
AQMCV	Aquaporin water channel containing vesicles
AQP	Aquaporin
ARB	Angiotensin receptor blocker
ARBs	Angiotensin Receptor blockers
AS	Aortic stenosis
ASCEND	Acute study of clinical effectiveness of neseritide in decompensated heart failure
AVP	Argenin vasopressin
AVR	Ascending vasrecta
BACH	Biomarkers in acute heart failure
RMI	Body mass index

Abb. Full term

BNP	Brain natriuretic peptide
cAMP	Cyclic adenosine monophosphate
CD	Collecting duct
CD-NP	Cenderitide
cGKI	.cGMP-regulated protein kinase
CGMP	Cyctic guanosine monophosphate
CHF	Congestive heart failure
CNP	.C type natriuretic peptide
CNS	Central nervous system
COMPASS	Carperitide effects observed through monitoring dyspnea in acute decompensated heart failure study
CPAP	Continuous Positive airway pressure
CRTP	Cardiac resynchronization therapy pacemaker
CSWS	Cerebral salt wasting syndrome
CV	. Cardio-vascular
DI	.Diabetes insipidus
DPPIV	Dipeptidyl peptidase IV
DVR	Descending vas recta
ECF	.Extracellular fluid
ECFV	Extracellular fluid volume
ED	.Emergency department
EMA	European Medicines Agency

Full term
Endotracheal tube
Efficacy of vasopressin antagonism in outcome of heart failure outcome study with Tolvaptan
Food and drug Administration
Guanyl cyclase A
Glomerular filtration rate
Gastrointestinal tract
Hypertension analysis of stress reduction using mind fullness medications and Yoga
Heart failure
Hydralazine and isosorbid dinitrate
Heart rate
Implantable cardioverter defibrillator
Intensive care unit
Inositol 1, 4, 5 triphsophate associated cGMP kinase substrate
Inner strip of outer medulla
Potassium
Left bundle branch block
Multicenter randomized double blind placebo controlled study to evaluate the efficacy and safety of oral Lixivaptan capsule in subjects with euvolemic hyponatremia
Left ventricle assist device
Left ventricle ejection fraction

Abb. Full term

LVEF	Left ventricle ejection fraction
MICP	Myosin light chain phosphate
MR antagonist	Miniralocorticoid receptor antagonist
MR	Mitral regurje
MRI	Magnetic resonance angiography
MR-ProADM	Mid regional fragement of pro ADM
MR-ProANP	Mid regional fragement of ProANP
Na	Sodium
NEP	Neprilysin
NEPi	Neprilysin inhibition
NF-KB	Nuclear factor K light chain enhancer
NIPPV	Non invasive positive pressure ventilation
NP	Natriuretic peptides
NPR-C	Natriuretic peptide clearance receptor
NTG	Nitroglycermine
NT-ProBNP	N-terminal prohormone BNP
NYHA	New York Heart Association
NYHA	New York heart association
OD	Osmotic demylination
ODS	Osmotic demyelination syndrome
OPC-31260	Mozavaptan
OPC-41061	Tolvaptan
OS-OM	Outer strip of outer medulla

Abb.	Full term
OVLT	Organum vasculosum laminae terminalis
PaO2	Partial pressure of oxygen
PCWP	Pulmonary capillary wedged pressure
PDEs	Phosphodiesterases
PGE2	Prostaglandin E2
PKG	cGMP Protein kinase G
PROTECT	Pro-Btype Natriuretic peptide outpatient tailored chronic heart failure therapy study
PVN	Paraventricula neucleus
RAA	Renin angiotensin adolsterone
RAAS	Renin angiotensin aldosteron system
RGS2	Regulator of G protein signaling subtype 2
SALT	Study of ascending levels of tolvaptan
SHR	Spontaneously hypertensive rats
SIADH	Syndrome of Inapropriate antidiuretic hormone
SIRIUS I	Effects of the renal natruiuretic peptide urodilatin (ularitide) in patients with decompensated heart failure
SIRIUS II	Renal effects of ularitide in patients with decompensated heart failure
SMCs	Smooth muscle cells
SNS	Sympathetic nervous system
SON	Supra Optic Neucleus

Abb.	Full term
SPO2	Saturationof peripheral oxygen
SR	Sarcolasmic reticulum
SR121463	Satavaptan
SR49059	Relcovaptan
TEMPO	Tolvaptan efficacy and safety in management of utosomal dominant polycystic kidney disease
TRPV	Transient receptor potential vanilloid
TRUE-AHF	Trial to evaluate the efficacy of safety of ularitide intravenous infusion in patients suffering from acute decompensated heart failure
UAE	Urinary albumin execretion
UCI	Urea channel inhibitors
URO	Urodilatin
V1a	Vasopressin 1a
V1b	Vasopressin 1b
V1R	Vasopressin 1 receptor
V2	Vasoprwessin2
V2R	Vasopressin 2 receptor
VMAC	Vasodilation in the management of acute congestive heart failure
YM-087	Conivaptan

Abstract

Hyponatremia is the most common disorder of electrolytes encountered in clinical practice. Despite knowledge of hyponatremia since the mid-20th century, this common disorder remains incompletely understood in many basic areas because of its association with a plethora of underlying disease states, and its causation by multiple etiologies with differing pathophysiological mechanisms. Optimal treatment strategies have not been well defined, both due to these reasons, and because of marked differences in symptomatology and clinical outcomes based on the acuteness or chronicity of the hyponatremia. The increased urine output produced by the aquaretics (aquaretics mostly act on vasopressin receptor antagonism leading to water excretion), is quantitatively equivalent to that of diuretics such as furosemide; qualitatively it is different in that only water excretion results and excretion of urinary solutes is not augmented. Thus, aquaretics produce solute-sparing water excretion in contrast to classic diuretic agents that block distal tubule sodium transporters, leading to simultaneous electrolyte and water losses. For this reason, the renal effects produced by this group of drugs have been termed aquaretic to distinguish them from the renal effects produced by classical diuretic agents, which are natriuretic and kaliuretic as well. This is not simply a semantic issue, because appreciating these important differences in renal effects is crucial for the intelligent clinical use of aquaretics. For example, the negative water balance induced by aquaretic agents has less adverse effect on neurohormonal activation and renal function than comparable degrees of urine output induced by loop diuretic agents, because only one third of the negative water balance induced by aquaretics derives from the ECF, whereas two thirds comes from intracellular water. Selective vasopressin 2 antagonists orally administered include (1) tolvaptan used in slowing progression in APCKD in TEMPO study and in EVEREST study for treatment of heart failure. (2) Mozavaptan present in Japan market for control of hyponatremia in paraneoplastic SIADH. (3) satavaptan showing promising results in controlling hyponatremia in liver cirrhosis patients (4) Lixivaptan involved in studies for treatment of eurovolemic hyponatremia. On the other hand conivaptan a non selective vasopressin antagonist was FDA approved for treatment of euvolemic and hypervolemic hyponatremia in hospitalized patients.

Keywords: Aquaretics, Aquaretics

Introduction

Typonatremia is the very most common electrolyte disturbance that occur in hospitalized patients (Schrier, 2006). It is associated with high mortality and morbidity in patients with liver, heart or neurological disease (Goldberg, 2006; Wu et al., 2006; Bhardwaj, 2006).

Vasopressin receptors play an important role in circulatory and water homeostasis including subtypes. Vasopressin 1a receptors (V1a) are located mainly in blood vessels having vasopressor action, vasopressin 1b receptors (V1b) found in the pituitary gland & are involved in vasopressin – stimulated secretion of adrenocorticotropin (Green berg and Verbalis, 2006; Streefkerk and van Zwieten, 2006).

Vasopressin 2 receptors (V2) are located in basolateral membrane of the cells of collecting duct of the kidney, they induce water reabsorption (Morello and Bichet, 2001). induce their effect through Aquaretics antagonizing vasopressin. V2 receptor antagonists (in contrast with the effect of diuretics) include a highly hypotonic diuretic effect without substantially affecting the excretion of electrolytes. V2 receptor antagonists include Mozavaptan, Lixivaptan Satavaptan and Tolvaptan (Decaux et al., 2008).

Tolvaptan has been used in a phase III (TEMPO3/4) study to block V2 receptors thus inhibiting cyst growth in adult polycystic kidney disease patients (Torres et al., 2011). Conivaptan is a V1a, V2 non selective receptor antagonist that has been approved by the US food and Drug Administration as intravenous infusion treatment of euvolemic hypervolemic hyponatremia (Decaux et al., 2008).

Some published studies showed V2 receptor antagonists effectiveness in increasing electrolyte free water excretion in various water retention disorders including hyponatremic patients with cirrhosis (Wong et al., 2003), congestive heart failure (Gheoghiade et al., 2006) and patients with syndrome of inappropriate antidiuretic hormone secretion (Soupart et al., *2006*).

On the other hand natriuresis; that is sodium execretion in urine is the principal action of natriuretic peptides. This action is concomitant with diurices; vasodilatation, antiinflammatory and antifibrotic effects as well. This action led to the pursuit of natriuetic peptides and chemically modified peptides as adjunctive therapy in management of myocardial ischemia (Kousholt, 2012).

AIM OF THE WORK

o review the current therapeutic and diagnostic uses and future prospectives of aquaretics and natriuretics with specific emphasis on their role in nephrology practice.