Ghrelin levels in cirrhosis and hepatocellular carcinoma

Thesis
Submitted for the partial fulfillment of
Master degree in Endocrinology

By

Alshimaa Mohamed Hassan *M.B., B.Ch*

Supervised by

Prof. Dr. Nermin Ahmed Sheriba

Professor of internal medicine and Endocrinology

Faculty of Medicine-Ain Shams University

Dr. Manal Mohamed Abo-Shady
Lecturer of Internal Medicine and Endocrinology
Faculty of Medicine-Ain Shams University

Dr. Mona Mohamed Abd El-Salam Lecturer of Internal Medicine and Endocrinology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2007

مستوي هرمون الجرلين في مرضى تليف الكبد وأورام الكبد

رسالة مقدمة توطئة للحصول علي الماجيستير في أمراض الغدد الصماء

مقدمة من الطبيبة الشيماء محمد حسن بكالوريوس الطب و الجراحة

تحت اشراف أد نرمين أحمد شريبة أستاذ امراض الباطنة و الغدد الصماء و الايض كلية الطب جامعة عين شمس

د منال محمد أبو شادى مدرس امراض الباطنة و الغدد الصماء و الايض كلية الطب جامعة عين شمس

د منى محمد عبد السلام مدرس امراض الباطنة و الغدد الصماء و الايض كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس 2007

List of Abbreviations

• AGRP Agouti-related protein.

• AN Anorexia nervosa.

• BAT Brown adipose tissue.

• BCAAS Branched-chain amino acids.

• CHF Congestive heart failure.

• CNS Central nervous system.

• COPD Chronic obstructive pulmonary

disease.

• COX-2 Cyclooxygenase-2.

• CRF Chronic renal failure.

• CRP C-reactive protein.

• CST Cortistatin.

• CT Calcitonin.

• EPA Eicosapentaenoic acid.

• ESRD End stage renal disease.

• GABA -aminobutyric acid.

• GHD GH deficiency.

• GHRH Growth hormone releasing

hormone.

• GHRP GH-releasing peptide.

• GHS GH secretagogue(s).

• GHS-R 1a GHS receptor type 1a

• GLP Glucagon-like peptide.

• HCC Hepatocellular carcinoma.

• HDL High-density lipoprotein.

• HMTC Human medullary thyroid

carcinoma.

• IGF-1 Insulin-like growth factor 1.

• IL Interleukin.

• INF Interferon.

• LMF Lipid mobilizing factor.

• LPL Lipoprotein lipase.

• LPS Lipopolysaccharide.

• LV Left ventricular.

• MAFbx Muscle Atrophy F-box.

• MuRF1 Muscle RING Finger 1

• NAFLD Nonalcoholic fatty liver disease.

• NASH Nonalcoholic steatohepatitis.

• NF β Nuclear factor kappa β.

• NPY Neuropeptide Y.

• NSAIDs Non-steroidal anti-inflammatory

drugs.

• PIF Proteolysis inducing factor.

• POMC Proopiomelanocortin.

• POMC/CART Proopiomelanocortin and

amphetamine regulated transcript.

• PRL prolactin

• PWS Prader-Willi syndrome.

• REE Resting energy expenditure.

• RMR Resting metabolic rate.

• SAP Serum amyloid protein.

• SS Somatostatin.

• Th1 T helper 1.

• TNF Tumor necrosis factor.

• UCP Uncoupling protein.

• ZAG Zinc 2 glycoprotein.

CONTENTS

Subject	Page			
Introduction and aim of the work				
Review of literature:				
Ghrelin	1			
Cachexia syndrome	54			
Gherlin and disease	88			
Subjects and methods	109			
Results	115			
Discussions				
Summary and conclusions				
Recommendations	173			
References				
Arabic summary				

List of Tables

Review of Literature Tables:

Table	Subject				Page	
Table 1:		incidence ent diseases			C	55

Results Tables:

Table	Subject	Page
Table 1:	Demographic data of control and patient groups.	123
Table 2:	Laboratory data of control and patient groups.	124
Table3:	Comparison between control group and liver cirrhosis group as regarding clinical and laboratory data	125
Table4:	Comparison between control and HCC group as regarding laboratory and clinical data by ANOVA.	127
Table5:	Comparison between HCC group and liver cirrhosis group as regarding clinical and laboratory data by ANOVA	129
Table 6:	Correlation of ghrelin with different lab. and clinical data in control group	130
Table 7:	Correlation of ghrelin with different lab. and clinical data in liver cirrhosis group	131

Table	Subject	Page
Table 8:	Correlation of ghrelin with different lab. and clinical data in HCC group	132
Table 9:	Comparison between patients with and without haematemesis in liver cirrhosis group as regarding serum ghrelin levels	133
Table 10:	Comparison between patients with and without heamatemesis in HCC group as regarding ghrelin levels.	134
Table 11:	Comparison between patients with and without encephalopathy in liver cirrhosis group as regarding ghrelin levels	135
Table 12:	Comparison between patients with and without encephalopathy in HCC group as regarding ghrelin levels	136
Table 13:	Comparison between patients with and without ascitis in liver cirrhosis group as regarding ghrelin levels	136
Table 14:	Comparison between patients with and without ascitis in HCC group as regarding ghrelin levels	137
Table 15:	Classification of patients according to child- pugh classification	138
Table 16:	Comparison between child A,B& C in liver cirrhosis group by ANOVA as regarding clinical and lab data	139

Table	Subject	Page
Table 17:	Comparison between child A& B as regarding clinical and lab data in HCV patients done by ANOVA	140
Table 18:	Comparison between child's A& C as regarding clinical and lab data in liver cirrhosis patients done by ANOVA	142
Table 19:	Comparison between child's B& C as regarding clinical and lab data in liver cirrhosis patients done by ANOVA	143
Table 20:	Comparison between child B& C in HCC group as regarding all studied variables by T test	144
Table 21:	Independent predictors of ghrelin by multivariant regression analysis	146

List of Figures

Review of Literature Figures:

Figure	Subject	Page
Figure 1:	Ghrelin structure	4
Figure 2:	Biological activities of Ghrelin	8
Figure 3:	Gherlin involvement in a neuroendocrine network regulating energy balance	20
Figure 4:	Pathways by which ghrelin may influence chronic energy balance	22
Figure 5:	The pathophysiology of cardiac cachexia	58
Figure 6:	The pathophysiology of AIDS wasting	64
Figure 7:	Mediators of cachexia	68
Figure 8:	The peripheral (A) and central (B) mechanisms producing anorexia-cachexia syndrome in cancer	70
Figure 9:	The pathophsiologic role of cytokines in the production of cachexia	79
Figure	Characteristics of end-stage CHF and COPD and the therapeutic potential of ghrelin	92

Results Figures:

Figure	Subject	Page
Figure 1:	Comparision between different groups as regarding BMI	147
Figure 2:	Comparision between different groups as regarding FBS	147
Figure 3:	Comparison between different groups as regarding PP	148
Figure 4:	Comparison between different groups as regarding serum Albumin	148
Figure 5:	Comparison between different groups as regarding serum Ghrelin	149
Figure 6:	Comparison between patients with and without haematemesis in liver cirrhosis group as regarding serum ghrelin levels	149
Figure 7:	Comparison between patients with and without haematemesis in HCC group as regarding serum ghrelin levels	150
Figure 8:	Comparison between patients with and without encephalopathy in liver cirrhosis group as regarding serum ghrelin levels	150
Figure 9:	Comparison between patients with and without encephalopathy in HCC group as regarding serum ghrelin levels	151

Figure	Subject	Page
Table 10:	Comparison between patients with and without Ascitis in liver cirrhosis group as regarding serum ghrelin levels	151
Figure 11:	Comparison between patients with and without Ascitis in HCC group as regarding serum ghrelin levels	152
Figure 12:	Comparison between Child A, B and C in liver cirrhosis group as regarding BMI	152
Figure 13:	Comparison between Child A, B and C in liver cirrhosis group as regarding PP	153
Table 14:	Comparison between Child A, B and C in liver cirrhosis group as regarding Ghrelin.	153
Figure 15:	Comparison between Child B and C in HCC group as regarding Ghrelin	154
Figure 16:	Comparison between serum Ghrelin andr FP	154
Figure 17:	Comparison between serum Ghrelin and BMI in control group	155
Figure 18:	Comparison between serum Ghrelin and BMI in liver cirrhosis group	156
Figure 19:	Comparison between serum Ghrelin and BMI in HCC group	157

Introduction:

Ghrelin is a recently identified enteric hormone composed of 28 amino-acid, it is predominantly produced by the stomach, and substantially lower amounts were detected in the bowel, pancreas, testis, pituitary, lung and hypothalamus (**Tena-sempere et al., 2002**). Ghrelin is an orexigenic hormone, involved in food intake, circulating ghrelin levels rise shortly before expected food intake and fall shortly after every meal (**Cummings et al., 2001**).

Ghrelin levels are significantly elevated in cachexia associated with heart failure. Similarly in cancer cachexia, ghrelin levels increase in subjects with cachexia and further increase occurs with decreased food intake with chemotherapy (Shimizu et al., 2003).

Anorexia is a problem of paramount importance in patients with advanced liver cirrhosis contributing to malnutrition (Marchesini et al., 2004). Malnutrition is a common problem in liver cirrhosis and hepatocellular carcinoma that may deteriorate the clinical condition with resultant poor prognosis (Ataseven et al., 2006). Because of its orexigenic properties ghrelin hormone may be involved in regulating food intake to compensate for malnutrition (Wren et al., 2001).

In vitro-experiments demonstrate that ghrelin as well as some synthetic analogues are able to modulate the proliferation of several human cell lines. In fact, ghrelin stimulates the cell proliferation of human hepatoma cells that express growth hormone secretagogue receptor-1a (GHSR-1a) (**Jeffery et al., 2002**).

Aim of the study:

Assessment of ghrelin role in the development of appetite disorders in patients with post-hepatitic liver cirrhosis, and in the development of cachexia associated with hepatocellular carcinoma.

Ghrelin

Ghrelin is a 28- amino acid residue peptide predominantly produced by the stomach (Fig.1). Lower amounts were detected in bowel, pancreas, kidneys, the immune system, placenta, testes, pituitary, lung, and hypothalamus (**Tena-Sempere et al., 2002**). Ghrelin displays a strong growth hormone-releasing activity which is mediated by the activation of the GH secretagogue receptor type 1a (GHS-R 1a), before the discovery of ghrelin this orphan receptor was known to be specific for the family of synthetic, peptidyl and non- peptidyl GHS (**Kojima et al., 1999**).

The discovery of ghrelin is an example of reverse pharmacology in which the discovery of the natural ligand ghrelin was started by the synthesis of analogs which led to the discovery of natural receptor and ended by the discovery of the natural ligand (ghrelin) (Van Der lely et al., 2004). Synthetic growth hormone secretagogues (GHS) are a family of ligands, including peptidyl and non peptidyl molecules (Ghigo et al., 2001). The first synthesized molecules were non natural peptides [Growth hormone-releasing peptides; GHRPs] designed by Bowers and Momany in the late 1970s (Bowers, 1998). They were