

A GENETIC BASED ALGORITHM FOR CONFLICT RESOLUTION

By

Sandra Wahid Amin Rizkallah

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Computer Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

A GENETIC BASED ALGORITHM FOR CONFLICT RESOLUTION

By Sandra Wahid Amin Rizkallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Under the Supervision of

Prof. Dr. Nevin Mahmoud Darwish

Dr. Samer Nabil Mohamed

Professor

Computer Engineering Department

Faculty of Engineering, Cairo University

Assistant Professor

Research and Data Processing Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

A GENETIC BASED ALGORITHM FOR CONFLICT RESOLUTION

By Sandra Wahid Amin Rizkallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Approved by the
Examining Committee

Prof. Dr.Nevin Mahmoud Darwish, Thesis Main Advisor

Prof. Dr. Magda Bahaa Eldin Fayek, Internal Examiner

Prof. Dr. Mohamed Zaki AbdelMegid, External Examiner

Prof. at Faculty of Engineering, Al-Azhar University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Sandra Wahid Amin Rizkallah

Date of Birth: 16/1/1992 **Nationality:** Egyptian

E-mail: sandrawahid@hotmail.com

Phone: 01224648878

Address: 62 El-Aalam buildings, Agouza

Registration Date: 1/10/2014 **Awarding Date:** 2017

Degree: Master of Science **Department:** Computer Engineering

Supervisors:

Prof. Dr. Nevin Mahmoud Darwish

Dr. Samer Nabil Mohamed (Research and

Data Processing Center)

Examiners:

Prof. Dr. Mohamed Zaki AbdelMegid (External examiner: Prof. at Faculty of Engineering, Al-Azhar

University)

Prof. Dr. Magda Bahaa Eldin Fayek (Internal examiner)

Prof. Dr. Nevin Mahmoud Darwish (Thesis main

advisor)

Title of Thesis:

A Genetic Based Algorithm for Conflict Resolution

Key Words:

Conflict Resolution; Dispute ; Genetic Algorithm; Nash Equilibrium; Grand Ethiopian Renaissance Dam

Summary:

This work presents a genetic based algorithm for conflict resolution. The solution is generated by assigning resources' shares for the conflicting parties based on their preferences. The proposed algorithm obtains optimal solutions that satisfy Nash equilibrium. We have successfully implemented and tested our algorithm. The implementation is flexible in the sense that the conflict can involve multiple weighted conflicting parties and multiple weighted resources whether those resources are divisible or not. Moreover, it allows for both text and image data to be incorporated. The implementation also permits users to participate in the solution generation process through the use of the F-mode option. In addition to comparing our results with those of similar publications, we have used the Grand Ethiopian Renaissance Dam conflict as a proof of concept.

Acknowledgments

I would like to thank **GOD** for guiding me throughout the work and giving me the strength in each step taken.

I would like to thank and express my deep appreciation for my supervisor **Prof.Dr. Nevin Darwish** who has suggested the direction of this research and has guided me throughout the work.

I would like to thank my supervisor **Dr. Samer Nabil** for his time and for allowing me to extend through his PhD work.

Finally, I would like to express my gratitude to **my family** who continuously support and encourage me.

Table of Contents

Acknowledgments	I
Table of Contents	II
List of Tables	V
List of Figures	VI
Nomenclature	VII
Abstract	VIII
Chapter 1 : Introduction	1
1.1. Motivation	1
1.2. Problem Definition and Proposed Approach	1
1.3. Thesis Organization	3
Chapter 2 : Background	4
2.1. Genetic Algorithm	4
2.2. Nash Equilibrium	7
Chapter 3 : Literature Review	9
3.1. Introduction	9
3.2. Related Work	9
3.3. Summary	16
Chapter 4 : Proposed Approach	17
4.1. Introduction	17
4.2. Proposed Algorithm Implementation	17
4.2.1. Genetic Algorithm Implementation	18
4.2.1.1. Initialization	18
4212 ('hyomogomo	10

4.2.1.3. Fitness Calculation	20
4.2.1.4. Selection	21
4.2.1.5. Operators	22
4.2.1.5.1. Crossover	22
4.2.1.5.2. Mutation	23
4.2.1.6. Termination	24
4.2.1.7. F-Mode	24
4.2.1.8. Comparison with other GA Implementations	24
4.2.2. Nash Equilibrium Satisfaction	26
4.3. Summary	28
Chapter 5 : Performance Evaluation and	
Experimental Results	29
5.1. Performance Evaluation	29
5.1.1. Population Size	29
5.1.2. Fitness Value	30
5.1.3. Number of Generations	31
5.1.4. Number of Resources	32
5.2. Testing	
5.2.1. Scenario1	34
5.2.2. Scenario2	35
5.3. Performance Analysis	37
5.4. Randomized Cases	41
5.4.1. Case One	41
5.4.2. Case Two	41
5.4.3. Case Three	41
5.4.4. Case Four	42
5.4.5. Conclusive Remarks	42

Chapter 6 : Case Study	43
6.1. History and Basic Information	43
6.2. Impact of the Dam	43
6.3. Reactions to the Dam Construction	44
6.4. Politicians Suggested Solutions	44
6.5. Proposed Approach Application	45
6.5.1. Resolution for Various Conflict Levels	46
6.5.1.1. Low Conflict Level	48
6.5.1.1.1. Case One	48
6.5.1.1.2. Case Two	49
6.5.1.2. Medium Conflict Level	51
6.5.1.2.1. Case One	51
6.5.1.2.2. Case Two	52
6.5.1.3. High Conflict Level	53
6.5.1.3.1. Case One	55
6.5.1.3.2. Case Two	56
6.5.1.4. Case for Number of Filling Years	57
6.5.2. Hypothetical Image Case	59
6.6. Conclusion	60
Chapter 7: Conclusion and Future Work	61
7.1. Conclusion	61
7.2. Future Work	61
References	62
Appendix A: Case Study Images	65

List of Tables

Table 4.1: GA Implementations Comparison	25
Table 5.1: Scenario1 Preferences [21]	34
Table 5.2: Scenario1 Result [21]	34
Table 5.3: Scenario1 Proposed Approach Result	35
Table 5.4: Scenario2 Preferences [21]	35
Table 5.5: Scenario2 Result [21]	36
Table 5.6: Scenario2 Proposed Approach Result	36
Table 5.7: Analysis Case [21]	37
Table 5.8: Performance Analysis Results	39
Table 5.9: Randomized Cases	42
Table 6.1: Various Conflict Cases	47
Table 6.2: Low Level Case Two	50
Table 6.3: Low Level Case Two F-mode	51
Table 6.4: Medium Conflict Level	51
Table 6.5: High Conflict Level	54
Table 6.6: High Level Case One F-mode	56
Table 6.7: Filling Years Case	58
Table 6.8: Supporting and Non-supporting Countries	59
Table 6.9: Images Case One	60
Table 6.10: Images Case Two	60

List of Figures

Figure 1.1: Situation Elements [22]	2
Figure 2.1: Generic GA Flowchart [10]	7
Figure 3.1: Methodology [23]	14
Figure 3.2: Deep Mind Map Example [24]	15
Figure 4.1: Proposed Approach Block Diagram	17
Figure 4.2: Proposed Algorithm	18
Figure 4.3: Crossover Operation	23
Figure 5.1: Average Execution Time versus Population Size	30
Figure 5.2: Fitness Value versus Population Size	31
Figure 5.3: Average Execution Time versus Number of Generations	32
Figure 5.4: Average Execution Time versus Number of Resources	33
Figure 5.5: Cumulative Probability of Success versus Number of Generations	40
Figure 5.6: Number of Required Runs as a Function of Cumulative Probability of Success	41
Figure 6.1: Low Level Case One Input	48
Figure 6.2: Low Level Case One Output	49
Figure A.1: Egypt and China Meeting [58]	65
Figure A.2: Egypt and Congo Meeting [58]	65
Figure A.3: Egypt and Saudi Arabia Meeting [58]	65
Figure A.4: Ethiopia and China Meeting [59]	65
Figure A.5: Ethiopia and Turkey Meeting [60]	65
Figure A.6: Ethiopia and France Meeting [60]	65

Nomenclature

Acronym	Stands for
Al	Artificial Intelligence
AW	Adjusted Winner
BCM	Billion Cubic Meters
EEPCo	Ethiopian Electric Power Corporation
FISA	Framework for Intelligent Situation Analysis
GA	Genetic Algorithm
GERD	Grand Ethiopian Renaissance Dam
NN	Neural Network
POC	Proof of Concept
TNC	Tripartite National Committee

Abstract

This work presents a genetic based algorithm for conflict resolution. The solution is generated by assigning resources' shares for the conflicting parties based on their preferences. The proposed algorithm obtains optimal solutions that satisfy Nash equilibrium. We have successfully implemented and tested our algorithm. The implementation is flexible in the sense that the conflict can involve multiple weighted conflicting parties and multiple weighted resources whether those resources are divisible or not. Moreover, it allows for both text and image data to be incorporated. The implementation also permits users to participate in the solution generation process through the use of the F-mode option. In addition to comparing our results with those of similar publications, we have used the Grand Ethiopian Renaissance Dam conflict as a proof of concept.

Chapter 1 : Introduction

Conflicts happen frequently in various fields and due to various reasons. Conflict resolution is not an easy task. It is an NP-complete problem with the possibility of having hidden variables. Moreover, a conflict resolution approach has to be general. If a conflict is not well managed, a crisis can be transformed into a disaster.

1.1. Motivation

Conflicts commonly arise between parties. It is normal not to expect that any two parties would agree about everything. Conflicts may be due to various reasons. These reasons include [1]: competing goals meaning that the involved parties cannot satisfy all their goals at the same time, contradictory interests in the sense that the involved parties disagree on their interests, disagreement about strategy meaning that the involved parties do not agree on the policies adopted for achieving their goals, absence of focus to resolve the real conflict, struggle for resources meaning that the involved parties are competing to acquire resources, limited resources meaning that the conflict may arise due to insufficient resources that can satisfy all parties and finally miscommunication in the sense that the involved parties fail to find a way to communicate their ideas and intentions.

If a conflict is not well managed, this may lead to critical situations. As a result, great care should be taken in dealing with conflicts. The process of conflict resolution should aim at satisfying all the involved conflicting parties. An optimal resolution for a conflict may also lead to strengthening the relations between the conflicting parties. However, reaching an optimal solution that satisfies all the involved parties is not an easy task. It consumes time, effort and may lead to breaking down the relations between the conflicting parties during that process. Moreover, relying on only one source of information about the conflict may lead to sub-optimal or unacceptable resolutions. Therefore, great attention should be given to collecting the data related to a certain conflict before trying to resolve it.

This happens for all sorts of conflicts that may arise in various fields including politics, economics, family, sales, commerce and others. Hence, it is of interest to achieve generality in the conflict resolution approach.

1.2. Problem Definition and Proposed Approach

This work aims at solving the problem of resolving conflicts among multiple parties over multiple divisible and non-divisible resources. It is an optimization problem. The resolution is in the sense of reaching an agreement acceptable to all parties.

Conflict resolution is the process of reaching a peaceful ending for a certain conflict between a number of parties. The term dispute resolution can be used interchangeably with the term conflict resolution [2]. Experts reside on discovering conflicts upfront by performing a situation analysis. Situation analysis is the process of inspection of the different elements of a situation and the relations between them to be fully aware of the situation. As shown in figure 1.1 a situation is composed of some elements that constitute other elements. The basic two elements are entity and event. An entity is a self-contained

existing thing. An event is something that is occurring. A group is an ensemble of entities and/or events that are related to each other. Activity refers to notions of action when something has the state of being active. A fact is a piece of information that actually exists and is characterized by being truthful and real. Data is considered factual information that is used in reasoning, discussion or calculation. Cues are the perceived features indicating the nature of something. Cues are generated from the various data sources e.g. text and/or images. Situation analysis process is then concerned with handling data and information that are inferred based on the input facts that are obtained from various sources in order to identify conflicts. [2]

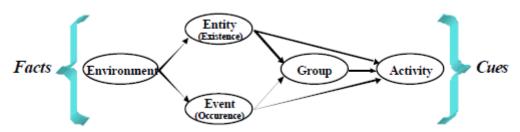


Figure 1.1: Situation Elements [22]

Resolution of conflicts will then be attempted peacefully by communicating information about the conflicting motives and engaging negotiation between conflicting parties. A model for conflict resolution is the dual concern model which assumes that the preferred method for parties to deal with a conflict is based on two dimensions [3, 4]: concern for self and concern for others. A balance between these two dimensions is needed in order to reach a satisfactory resolution for the underlying conflict that balances between satisfying personal needs and the needs of others. This model states five conflict resolution strategies that parties may adopt:

Avoidance conflict style:

Avoidance conflict style is characterized by avoiding the conflict topic and denying the existence of a problem. This may be because one party does not want to deal with another party, when a party is not comfortable with the conflict or due to cultural issues. The conflicting parties wait to see what the conflict will reach without involvement. However, in case of high conflict levels this ignorance may lead to losing control [5].

• Yielding conflict style:

Yielding conflict style is characterized by high concern for others and low concern for oneself. This may be due to the desire of keeping stable and positive relationships [33].

• Competitive conflict style:

Competitive conflict style is characterized by high concern for oneself and low concern for others. Generally, competitive parties seek dominance over others [3].

• Cooperation conflict style:

Cooperation conflict style is characterized by cooperating parties making effort in order to reach a resolution that satisfies all the conflicting parties. Usually these parties have high concern for oneself and also for others [5].

• Conciliation conflict style:

Conciliation conflict style -also referred to as compromising style- is characterized by parties having intermediate level of concern for both oneself and others. Generally, compromisers are concerned with fairness and so they are willing to make compromises and accept trade-offs [5].

Proceeding from the fact that resolving conflicts involves many problems, computers were introduced to automate the task of conflict resolution. One proposed approach involves using genetic algorithm (GA) for resolving the underlying conflict. Genetic algorithms are suitable for the task of conflict resolution due to the following reasons:

- It is domain independent so it can be used to resolve conflicts from different fields
- It gives a ranked number of generated solutions.

Nevertheless, GA based solutions are optimal relative to their fitness functions but do not take into account Nash Equilibrium which is an important factor for usually accepted conflict resolution solution.

We propose a genetic based algorithm for conflict resolution that achieves Nash equilibrium. The input to our algorithm includes the resources involved in the conflict, their categories and their importance. Moreover, the input includes the conflicting parties, the weights of these parties in the conflict and their preferences for the resources in the conflict. The output is an optimal solution for the conflict that satisfies Nash equilibrium (NE). As a proof of concept, we have successfully applied our proposed approach on the Grand Ethiopian Renaissance dam (GERD) conflict.

1.3. Thesis Organization

The thesis document is organized into seven chapters as follows. The current chapter is the introduction. Chapter two includes others' work done in the field of conflict resolution using various techniques. Chapter three contains the necessary background needed to fully understand our proposed approach. Chapter four includes the details of the approach we have devised. Chapter five shows the performance evaluation of the proposed approach and the results obtained when comparing our approach with that of others. Chapter six includes details about our case study: Grand Ethiopian Renaissance Dam and the results of applying our approach to this case. Chapter seven concludes the work done and shows the future work directions. Throughout the chapters the term resource and issue can be used interchangeably.

¹ In this context "Weight of the party" refers to the power of the party to achieve its interests.