CHARACTERIZATION OF SOME BACTERIAL VIRUSES ISOLATED FROM DRAIN WATER AND THEIR APPLICATIONS

YASMER SAYED HUSSEIN MUHAMMAD

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2003 M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams Univ., 2010

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Agricultural Viruses)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

CHARACTERIZATION OF SOME BACTERIAL VIRUSES ISOLATED FROM DRAIN WATER AND THEIR APPLICATIONS

By

YASMER SAYED HUSSEIN MUHAMMAD

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2003 M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams Univ., 2010

This thesis for Ph.D. degree has been approved by:

	Gamal El-Didamony Mohamed Prof. of Virology, Fac. of Science, Zagazig University.
Dr.	Atef Shoukry Sadik
	Prof. Emeritus of Agric. Viruses, Fac. of Agric., Ain Shams
	University.
Dr.	Badawi Abd El-Salam Othman
	Prof. Emeritus of Agric. Viruses, Fac. of Agric., Ain Shams
	University.
Dr.	Khalid Abdel-Fattah El-Dougdoug
	Prof. Emeritus of Agric. Viruses, Fac. of Agric., Ain Shams
	University.

Date of Examination: 19/12 /2017

CHARACTERIZATION OF SOME BACTERIAL VIRUSES ISOLATED FROM DRAIN WATER AND THEIR APPLICATIONS

By

YASMER SAYED HUSSEIN MUHAMMAD

B.Sc. Agric. Sc. (Agric. Microbiology), Ain Shams Univ., 2003 M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams Univ., 2010

Under the Supervision of:

Dr. Khalid Abdel-Fattah El-Dougdoug

Prof. Emeritus of Agricultural Viruses, Dept. of Agric. Microbiology, Fac. of Agriculture, Ain Shams University (Principle Supervisor)

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agricultural Viruses, Dept. of Agric. Microbiology, Fac. of Agriculture, Ain Shams University

ABSTRACT

Yasmer Sayed Hussein Muhammad: Characterization of some Bacterial Viruses Isolated from Drain Water and Their Applications. Unpublished Ph.D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2018.

We are here focusing on isolation of some bacterial viruses from sewage water, irrigation water contaminated with sewage and characterization of these viruses biologically and chemically using some modern technologies. Their use as biological control agents against the contaminated bacteria was also aimed. A number of water samples, including water from irrigation and other systems contaminated with sewage, were collected from four different canals in El-Kalubiah and El-Giza Governorates. On microbiological analysis, some pathogenic bacteria, including *Listeria* sp. and *Salmonella* sp., were isolated and then the presence of phages specific to these bacteria was detected by spot test. Six phages for each bacterial host were propagated, and partially purified. The phages were characterized by determining their stability under different factors, and determination of their morphology by electron microscopy. The molecular weight of their proteins was estimated using SDS-PAGE, and finally, RAPD-PCR technique was used to determine the genetic variability between the isolated phages. Samples of green salad, which is not exposed to any thermal transactions, and could be contaminated with undesirable microbes, were tested as previously mentioned. Determination the safety of using phages as a food additive was done by testing the cytotoxicity of phages on liver carcinoma cell line in vitro. The results indicated that all phages didn't show any cytotoxic effect on liver carcinoma cell line. Phage cocktails were applied as biological control agents against the pathogenic bacteria of this study (L. monocytogenes and S. Typhimurium). Promising results were recorded, therefore, the results can be considered as a milestone for the formation of a bank of bacterial viruses which can be widely used in biological control as well as gene therapy.

Keywords: Phages, Microbiological analysis, Stability, SDS-PAGE, RAPD-PCR, Cytotoxicity on cell line, *Listeria monocytogenes*, *Salmonella* Typhimurium, Biocontrol.

ACKNOWLEDGMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way

I would like to express my deepest gratitude and special respect to **Dr. Khalid Abd El-Fattah El-Dougdoug**, Emeritus Professor of Agric. Virology, Agric. Microbial. Dept., Fac. of Agric., Ain Shams Univ., for his sincere, kind supervision and important accurate notices from the beginning to the end of this work.

Thanks to **Dr. Badawi Abd El-Salam Othman**, Emeritus Professor of Agric. Virology, Agric. Microbial. Dept., Fac. of Agric., Ain Shams Univ., for his helpful supervision, valuable guidance, and his encouragement to accomplish this study.

Thanks are also due to **Dr**. **Samar Sayed Ahmed,** Assistant Professor of Agric. Virology., Agric. Microbial. Dept., Fac. of Agric., Ain Shams Univ., for her kindly and useful help and continuous guidance during the period of this study, especially within preparing the thesis.

I would like to express my great appreciation to all staff members of the Agric. Microbial. Dept., Fac. of Agric., Ain Shams Univ., for their support during this investigation.

CONTENTS

LIST OF TABLES.
LIST OF FIGURES.
LIST OF ABBRIVIATION
INTRODUCTION
REVIEW OF LITERATURE
MATERIALS AND METHODS
1. Water samples collection
2. Microbiological analyses of the water samples
2.1. Determination of TVBCs
2.2. Determination of the coliform group
2.2.1. Determination of the TC count
A. Presumptive Phase
B. Confirmed Phase.
C. Completed Phase
2.2.2. Determination of the FC count
2.3. Determination of the FS count
2.4. FC/TC percentage
2.5. FC/FS ratio
2.6.Detection of pathogenic bacteria
2.6.1. Detection of Salmonella spp.
2.6.2. Detection of <i>Listeria</i> spp
3. Occurrence of bacteriophages specific for <i>Listeria</i> and <i>Salmonella</i> as a bacterial pathogens in the water
3.1.Detection of the phages specific for <i>Listeria</i> and <i>Salmonella</i> in the water
3.1.1. Bacterial hosts used for detection and isolation of phages
3.1.2. Growing and maintenance of bacterial hosts
3.1.3. Detection of the temperate phages in <i>Listeria</i> and <i>Salmonella</i> bacterial cultures
3.1.3.1. Temperate phages
3.1.3.2. Detection of <i>Listeria</i> and <i>Salmonella</i> lytic phages in the water samples

3.1.4.1. Detection of the lytic phages qualitatively
3.1.4.2. Detection of the lytic phages quantitatively
3.1.5. Isolation and propagation of bacteriophages
3.1.6.Purification and concentration of <i>Listeria</i> and <i>Salmonella</i> phage stocks
3.1.7. Characterization of the isolated bacteriophages
3.1.7.1.Microscopic examination of <i>Listeria</i> and <i>Salmonella</i> phages
3.1.7.2. Determination of phages stability
3.1.7.2.2. Longevity <i>in vitro</i>
3.1.7.2.3. pH stability
3.1.7.2.4. UV radiation stability
3.1.7.3. Host range pattern
3.1.8.4. Characteristic of UV spectra
3.1.8. Chemical properties <i>Listeria</i> and <i>Salmonella</i> phages
3.1.8.1. Determination of phages protein quantity by Bradford method
A. Preparation of the standard curve of protein
B. Determination of protein contents
3.1.78.2. Determination of molecular weights of phages proteins by SDS-PAGE
A. Preparation of SDS-Polyacrylamide Gel
B. Preparation of phage's proteins
C. Electrophoresis of protein
3.1.8.3. Molecular variability among phage isolates
3.1.8.3.1. Extraction of total nucleic acids
3.1.8.3.2. Agarose gel electrophoresis
3.1.8.3.3. RAPD PCR
3.1.8.3.3.1. DNA amplification cycles
4. Application of bacteriophages for biological control
4.1. Experimental design
4.2. Microbiological analysis.

4.3. Statistical analysis	53
5.Studying the cytotoxicity of different concentrations of phage cocktails on tissue culture	53
6. Collection of vegetable sample irrigated with polluted water	56
7. Collection of green salad samples and detection of the pathogenic bacteria	57
8. Detection and isolation of phages from the collected green salad samples	57
9. Host range of the isolated bacteriophages from green salads	58
10. Tested the effect of different concentrations of some food additives to green salad on the phage cocktails	58
11. Combating the bacterial pathogens in food by the phages	58
11.1.Post-harvest phage application	58
11.1.1. Green salad preparation	58
11.1.2. Preparation of the bacterial inoculum	59
11.1.3. Preparation of the phage inoculum	59
11.1.4. Design of the experiment	59
11.1.5. Bacterial pathogens counts	60
11.1.6. Assaying of bacteriophages	61
11.1.7. Statistical analysis	61
12. Media and Buffers	62
RESULTS	75
DISCUSSION	129
SUMMARY	146
REFERENCES	155
ARABIC SUMMARY	

LIST OF TABLES

No.	
1	Preparation of separating and stacking gel of SDS-PAGE
2	Program of RAPD-PCR.
3	Microbiological analyses of water samples obtained from different canals
4	Detection of <i>Listeria</i> lytic phages in water and sewage water samples
5	Detection of Salmonella lytic phages in water and sewage water samples
6	Plaque morphology and concentrations of Listeria phages
7	Plaque morphology and concentrations of Salmonella phages
8	Virus particles morphology of <i>Listeria</i> phages
9	Virus particles morphology of Salmonella phages
10	Determination of thermal inactivation point of the isolated <i>Listeria</i> phages
11	Determination of thermal inactivation point of the isolated <i>Salmonella</i> phages
12	Effect of pH values after different periods on the <i>Listeria</i> phages
13	Effect of pH values after different periods on the Salmonel-la phages
14	Effect of UV light on the <i>Listeria</i> phages
15	Effect of UV light on the Salmonella phages
16	Host specificity of the isolated <i>Listeria</i> phages
17	Host specificity of the isolated Salmonella phages
18	Spectrophotometric data of purified <i>Listeria</i> phages
19	Spectrophotometric data of purified Salmonella phages
20	Protein patterns of <i>Listeria</i> phages determined by SDS-PAGE analysis

21	Protein patterns of <i>Salmonella</i> phages determined by SDS-PAGE analysis.	10
22	Genetic polymorphoism among amplified DNA of <i>Listeria</i> phages	10
23	Genetic polymorphoism among amplified DNA of <i>Salmonella</i> phages	11
24	Effect of different phage multiplicity of infection on the growth of <i>Listeria in vitro</i>	11
25	Effect of different phage multiplicity of infection on the growth of Salmonella in vitro	11
26	Microbiological analysis of different green salad samples obtained from different levels of restaurants	11
27	Host range of the green salads phages	12
28	Plaque morphology of <i>Listeria</i> phages isolated from the green salads	12
29	Plaque morphology of <i>Salmonella</i> phages isolated from the green salads	12
30	Lytic efficiency of <i>Listeria</i> phages in green salad application	12
31	Lytic efficiency of <i>Salmonella</i> phages in green salad application	12

LIST OF FIGURES

No.		Page
1	Photographs showing (A) Meet Nama canal as one of the four water sample sources and (B) Removing of the sewage into the canal	37
2	Photoplate of spot test shows the bacterial lysis (arrow) caused by virulent phage specific for S. Typhimurum	81
3	 (A) Single plaques of <i>L. monocytogenes</i> phage showing identical morphology of the original plaques. (B) Single plaques of <i>S.</i> Typhimurum phage showing identical morphology of the original plaques. 	81
4	Electron micrographs of the isolated <i>Listeria</i> phages (ØLG, ØLA ØLM, ØLN, ØLD, and ØLP) negatively stained with 2% uranyl acetate	86
5	Electron micrographs of the isolated <i>Salmonella</i> phages (ØSM, ØSF, ØSG, ØSP, ØSA and ØSD) negatively stained with 2% uranyl acetate	88
6	UV spectrum of purified ØLG <i>Listeria</i> phage	97
7	UV spectrum of purified ØLN <i>Listeria</i> phage	98
8	UV spectrum of purified ØLA <i>Listeria</i> phage	98
9	UV spectrum of purified ØLD <i>Listeria</i> phage	98
10	UV spectrum of purified ØLM <i>Listeria</i> phage	99
11	UV spectrum of purified ØLP <i>Listeria</i> phage	99
12	UV spectrum of purified ØSM Salmonella phage	100
13	UV spectrum of purified ØSF Salmonella phage	101
14	UV spectrum of purified ØSG Salmonella phage	101
15	UV spectrum of purified ØSP Salmonella phage	101
16	UV spectrum of purified ØSA Salmonella phage	102
17	UV spectrum of purified ØSD Salmonella phage	102
18	Quantitation of <i>Listeria</i> viral protein using Bradford method: 1, 2,3,4,5 and 6 for ØLG, ØLN, ØLA, ØLD, ØLM and ØLP, respectively	103

19 20	Quantitation of <i>Salmonella</i> viral protein using Bradford method: 1, 2, 3, 4, 5 and 6 for ØSM, ØSF, ØSG, ØSP, ØSA and ØSD	103 106
21	SDS- PAGE protein patterns of Salmonella phages	108
22	Electrophoresis of extracted DNA of <i>Listeria</i> (1-6) and <i>Salmonella</i> (7-12) phages in 1% agarose	108
23	Agarose gel (1%) shows the DNA polymorphism of the six <i>Listeria</i> phages (ØLG, ØLN, ØLA, ØLD, ØLM and ØLP) amplified by OPA-01 primer. M, DNA marker	110
24	Agarose gel (1%) shows the DNA polymorphism of the six <i>Salmonella</i> phages (ØSM, ØSF, ØSG, ØSP, ØSA and ØSD) amplified by OPA-01 primer. M, DNA marker	111
25	The increasing and reduction of <i>Listeria</i> log numbers in control and at the different MOI	114
26	The increasing and reduction of <i>Salmonella</i> log numbers in control and at the different MOI	116
27	Negative control (non-treated livercar cinoma cell line)	117
28	Positive control (Doxorubcin–HCL with concentration 6 $\mu g/mL$).	117
29	Different pathogenic bacterial colonies growing on different media, (A) BSA; (B) (XLD; (C) EMB and (D) PALCAM agar.	119
30	The increasing and reduction of <i>Listeria</i> log numbers in the different treatments	125
31	The increasing and reduction of <i>Salmonella</i> log numbers in the different treatments	128

LIST OF ABBREVIATIONS

A

Agric. Agriculture

APHA American Public Health Association

APS Ammonium persulfate

В

BCM Billion Cubic Meter

BHI Brain Heart Infusion

bp Base pair

BPB Bromophenol blue

BPW Buffer peptone water

BGLBB Brilliant green lactose bile broth

BSA Bovine serum albumin

BiSA Bismuth sulphite agar

 \mathbf{C}

°C Centigrade

CaCl₂ Calcium chloride

CBB Coomassie brilliant blue

cfu Colony forming unit

Cm Centimeter

Cm² Square centimeter

CR agar Congo red agar

CsCl Cesium chloride

D

Dept. Department

DLA Double layer agar

DMSO Dimethyl sulfoxide

DNA Deoxy ribonucleic acid

ds-DNA Double strand deoxy ribonucleic acid

 \mathbf{E}

e.g. Exempli gratia (For example)

EDTA Ethylene diamine tetra acetic acid

EHEC Enterohemorrhagic E. coli

EM Electron microscope

EMB Eosin methylene blue

EPA Environmental protection agency

et al. And others (et alii)

 \mathbf{F}

°F Fahrenheit

Fac. Faculty

FC Fecal coliform

FDA Food and drug agency

FS Fecal streptococci

 \mathbf{G}

g Gram

g Gravity

GRAS Generally recognized as safe