

Ain Shams University Faculty of Engineering Computer and Systems Engineering Department

Incremental Data Mining of Data Streams

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer and Systems Engineering

Submitted By

Amany Fathy Soliman

M.Sc. In Computer and Systems Engineering Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Under Supervision of

Prof. Dr. Hoda Korashy Mohammed

Professor at the Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Dr. Gamal A. Ebrahim

Assistant Professor at the Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Cairo - 2012

Acknowledgement

I am heartily thankful to Prof. Dr. Hoda Korashy for her encouragement, guidance, direction and support from the preliminary to the concluding level. I am particularly grateful to Dr. Gamal A. Ebrahim for his thoughtful and creative comments. I am sure it would have not been possible without his help.

I am also grateful to my parents, brother, and sisters who always believe in me.

I also thank my wonderful children: Mahmoud, Mariam, and Menna, for always making me smile. I hope that one day they can read this thesis and understand why I spent so much time in front of my computer.

Finally, words alone cannot express the thanks I owe to Ahmed, my husband, for his unconditional love, encouragement, and support.

Amany Fathy

Approval sheet

Name: Amany Fathy Soliman

Degree: Doctor of Philosophy in Computer and Systems Engineering

Thesis Title: Incremental Data Mining of Data Streams

Discussion Committee

Prof. Dr. Vijay Raghavan

Professor at University of Louisiana, United States of America

Prof. Dr. Hazem Mahmoud Abbas

Professor at the Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University

Prof. Dr. Hoda Korashy Mohammed

Professor at the Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University

Date: 9 / 6 / 2012

Statement

This dissertation is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and Systems Engineering.

The work included in this thesis was carried out by the author at Computer and Systems Engineering Department, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other universities or institutions.

Date: 9 / 6 / 2012

Name: Amany Fathy Soliman

Signature:

Abstract

Name: Amany Fathy Soliman

Degree: Doctor of Philosophy in Computer and Systems Engineering

Thesis Title: Incremental Data Mining of Data Streams

The advances in processing and communication techniques resulted in a multitude of emerging applications that interact with streams of data. Traditional data mining systems store arriving data, collect them for later mining, and make multiple passes over the collected data. Unfortunately, these systems are prohibitively slow when they deal with data streams with massive amounts of data arriving at high rates. Data streams have attracted considerable attention in recent years. A growing number of applications generate streams of data. The continuous generation of new elements in a data stream imposes additional constraints on the methods utilized for mining such data. For example, memory usage is restricted, the infinitely flowing original dataset cannot be scanned multiple times, and current results should be available on demand. In many cases, evolution of sequential patterns is more interesting than sequential patterns themselves. Data evolution is one of the most challenging problems in mining sequential patterns in data streams.

Hence, in this thesis a new framework for mining sequential patterns in evolving data streams is introduced. Batch-window combined with tilted-time window models have been adopted in mining sequential patterns in evolving data streams. Simulation study has been carried out to show the applicability and flexibility of the presented model. The proposed framework guarantees no false negatives and imposes a lower bound of the support of false positives. In addition, the correctness of the proposed framework has been proven.

The introduced framework has been extended to account for distributed data stream situations. The extended model focuses on evolving data streams that originate from multiple distributed sources. Moreover, the mining process is achieved without compromising the privacy of the individual data streams of the participant nodes. The extended framework is able to mine sequential patterns from multiple distributed evolving data streams. It is proven that the proposed model produces no false negatives and imposes a lower bound of the support of false positives. Simulation study has been carried out to analyze the performance of the proposed model. Simulation results show that the proposed model reduces the communication overhead in the distributed mining process compared to performing the mining in a centralized setting. Most importantly, it scales linearly with the number of distributed nodes, which contributes to the scalability of the proposed model.

Contents

Cl	HAPTER 1: Introduction 1	Ĺ
	1.1 General	L
	1.2 Introduction	2
	1.3 Definition of Data Streams	2
	1.4 Types of Data Streams	3
	1.5 Data Streams Characteristics	3
	1.6 Applications of Data Stream Processing	ļ
	1.7 Requirements and Challenges for Data Stream Processing	ļ
	1.8 Data Stream Management Systems (DSMSs)	5
	1.8.1 Continuous Queries	5
	1.8.2 DSMS versus DBMS	5
	1.9 Windows on Data Streams	7
	1.10 Data Stream Mining	3
	1.11 Objectives of the Thesis)
	1.12 Organization of the Thesis)
Cl	HAPTER 2: Mining Data Streams10)
	2.1 Introduction)
	2.2 Clustering of Data Streams	L
	2.3 Classification of Stream Data	3
	2.4 Sequential Pattern Mining of Data Streams	ļ
	2.4.1 Sequential Pattern Mining	ļ
	2.4.2 Sequential Patten Mining Problems	5
	2.4.3 Sequential Pattern Mining in Database	7
	2.4.4 Sequential Patten Mining Problems in Data Streams	3
	2.4.5 Sequential Pattern Mining in Data Streams	3
	2.4.5.1 Efficient Extraction of Sequential Patterns in Data streams 19)

	2.4.5.2 A Near-Optimal Statistical Approach	20
	2.4.5.3 Incremental Mining of Sequential Patterns	20
	2.4.5.4 Mining Sequential Patterns from Data Streams	21
	2.4.5.5 Sequential Pattern Mining Based on Random Sampling	21
	2.4.5.6 Stream Sequential Pattern Mining with Precise Error Bounds	22
	2.4.5.7 Sequential Pattern Automaton for Mining Streams	23
	2.4.5.8 Mining Approximate Sequential Pattern in Data Stream	23
	2.4.5.9. Maximal Frequent Sequential Patterns Mining	23
	APTER 3: Mining Sequential Patterns in Evolving Data Streams	
3.	.1 Introduction	25
3.	.2 Motivation	26
3.	.3 The Evolution of a Data Stream	26
3.	.4 Tilted-Time Window	27
3.	.5 Batch-Window Model	28
3.	.6 Contributions	29
3.	.7 Proposed Framework	30
	3.7.1 Adopted Data Structure	30
	3.7.2 Framework Structure	33
	3.7.2.1 Assumptions	33
	3.7.2.2 Inputs of the Algorithm	33
	3.7.2.3 Framework Description	34
	3.7.3 Illustrative Example	36
	3.7.4 Searching and Inserting in a Lexicographic Tree	42
	3.7.5 General Tree Traversal	44
	3.7.6 Maintaining Tilted-Time Window Table	48
	3.7.6.1 Maintaining Natural Tilted-Time Window	48
	3.7.6.2 Maintaining Logarithmic Tilted-Time Window	48
	3.7.7 Pruning the Tree	51

3.7.7.1 Not_Recently_Occured Pruning	51
3.7.7.2 Time_Fading Pruning	54
3.7.7.2.1 Definitions	54
3.7.7.3 Controlled_Memory Pruning	57
3.7.8 Outputting the Results	61
3.7.9 Correctness of the Proposed Algorithm	62
3.7.10 Reasons for Using PrefixSpan	65
3.7.11 Storing Old Mining Results	65
CHAPTER 4: Collective Sequential Pattern Mining in Distributed E Data Streams	_
4.1 Introduction	
4.2 Related Work	68
4.3 Problem Formulation	70
4.4 Collective Sequential Pattern Mining in Distributed Evolving Dat Streams	
4.4.1 Mining Sequential Patterns at Local Nodes	71
4.4.2 Integration Phase	72
4.4.3 Mining Global Sequential Patterns at the Coordinator Node	74
4.5 The Hierarchical Structure	76
4.6 Theoretical Analysis	76
CHAPTER 5: Simulation Study	
5.2 The Adopted Data Stream	
•	
5.3 Mining the Data Stream Batches for Sequential Patterns	
5.4 Implementation Tools	
5.5 Experimental Results	82
5.5.1 SPEDS Simulation	82
5.5.1.1 Time Requirement for SPEDS	82
5.5.1.2 Comparing SPEDS with SS-RE	84

5.5.1.3 Changing the Window Size	85
5.5.1.4 Changing the Pruning Period	85
5.5.2 Mining Sequential Patterns in Multiple Distributed Evolving Data Streams Simulation	
5.5.2.1 Changing the Local Minimum Support	. 88
5.5.2.2 The Communication Load at the Coordinator Node	88
5.5.2.3 The Time Requirements at the Coordinator Node	. 89
CHAPTER 6: Conclusions and Future Work	. 92
6.1 Conclusions	. 92
6.2 Future Extensions	. 93
6.2.1 Recognizing and Handling Noise in Data Streams	93
6.2.2 Introducing More Data Stream Mining Algorithms	94
6.2.3 Using Real Data Stream	94
6.2.4 Using Soft-Computing Techniques in Distributed Stream Mining	94
APPENDIX A: Synthetic Data Generator for Sequential Patterns Mining	, 95
A.1 Output Format	95
A.2 Command Line Options	96
A.3 Example	. 97
APPENDIX B: Sequential Pattern Mining Using PrefixSpan	. 99
B.1 Input Parameters	. 99
B.2 Output	100
B.3 Input File Format	101
Decembrace	100

List of Figures

Fig. 1.1. Window on data stream	7
Fig. 2.1. A transaction database and a sequence database	
Fig. 3.1. Natural tilted-time window frame	27
Fig. 3.2. Tilted-time window frame with logarithmic partition	28
Fig. 3.3. A lexicographical tree that represents a set of sequences	31
Fig. 3.4. A detailed lexicographical tree that represents sequences	32
Fig. 3.5. The initialization phase	34
Fig. 3.6. Incremental update of <i>tree</i> phase	35
Fig. 3.7. The tree after processing B_1	37
Fig. 3.8. The tree after processing B_2	39
Fig. 3.9. The tree after updating Tilted_table of each node	40
Fig. 3.10 . The tree after processing B_3 and B_4	41
Fig. 3.11. An example for a lexicographic tree	43
Fig. 3.12. Search a lexicographic tree for a given sequence	45
Fig. 3.13. Search and inserting a given sequence in a lexicographic tree	46
Fig. 3.14. The lexicographic tree after inserting aco	47
Fig. 3.15. Preorder depth-first general tree traversal	47
Fig. 3.16. The tree after pruning using Not_Recently_Occured pruning methods.	od
Fig. 3.17. Not_Recently_Occured pruning method	54
Fig. 3.18. The tree after the processing of four time windows	58
Fig. 3.19. The tree after pruning using Time_Fading pruning method	59
Fig. 3.20. Time_Fading pruning	
Fig. 3.21. The tree after pruning using Controlled_Memory pruning method.	63
Fig. 4.1. The architecture of the proposed model	73
Fig. 4.2. Mining local frequent sequential patterns (executed at the local	
participant nodes N_i)	74
Fig. 4.3. The modified SPEDS for integration phase (executed at the coordin	
node)	75
rode)	75) 75
rode)	75) 75 77
node)	75) 75 77
rode)	75) 75 77 83

Fig. 5.3. Average execution time for SPEDS and SS-BE	85
Fig. 5.4. Average time for updating tilted-time window tables	86
Fig. 5.5. Average time for pruning the tree	87
Fig. 5.6. Changing the local minimum support σ_L	88
Fig. 5.7. Communication load at the coordinator node	89
Fig. 5.8. The communication load at the coordinator node in a centraliz	ed setting
	90
Fig. 5.9. Time for outputting <i>GS</i>	91
Fig. 5.10. Time for the integration phase	

List of Tables

Table 3.1. Sequence database	28
Table 3.2. A tilted-time window table	32
Table 3.3. A tilted-time window table for a new node using Controlled	ed_Memory
Pruning	61

CHAPTER 1

Introduction

1.1 General

In recent years, data streams have attracted considerable attention in different fields of computer science such as database systems, data mining, and distributed systems. A data stream is an ordered sequence of data items, where the elements of the sequence continuously arrive as time progresses.

A growing number of applications generate streams of data; these applications may include sensor network data, performance measurements in network monitoring and traffic management, and log records generated by web servers.

Because of the underlying resource constraints in terms of memory and running time; most conventional data mining techniques have to be adapted to fit with the nature of the data streams.

1.2 Introduction

This chapter provides an overview of the concept of data streams and explains the types and characteristics of data streams. It also, introduces several applications of data stream processing and the challenges that face them. In addition, it presents Data Stream Management Systems (DSMS), continuous queries, and a comparison between DSMS and traditional Database Management Systems (DBMS). The models of data streams will be discussed; in addition, techniques utilized for mining data streams are introduced. Finally, the objectives of the thesis and the scope and organization are presented.

1.3 Definition of Data Streams

A data stream is a real-time, continuous, ordered sequence of items [1]. The order of these items is either implicit by arrival time or explicit by timestamps. The order in which items arrive in a data stream could not be controlled and it is not feasible to store a stream locally in its entirety [1]. The items in a data stream arrive at a high rate, which leads to a massive/infinite volume of data. In addition, each item in a data stream is a structured record. In [2] data stream was defined as: "the continuous flow of data generated at a source (or multiple sources) and transmitted to various destinations."

A variety of areas gives motivation for studying data streams which may include: hundreds of nodes in sensor networks, each taking readings at a high rate; huge quantities of meta-data generated from communications networks about the traffic passing across them; and in