

Ain Shams University Women's College for Arts, Science and Education, Cairo, Egypt.

Effect of Some Industrial Wastes on The Physico-Chemical and Mechanical Properties of Hardened Cement Pastes

A Thesis Submitted for Ph.D. Degree in Chemistry (Inorganic and Analytical Chemistry)

BY Samar Mohamed Fathi (M.Sc. in chemistry), 2011

Supervised by

Prof. Dr. Essam A. Kishar

Prof. of Inorganic Chemistry, Women's College, Ain Shams University.

Prof. Dr. Tarek M. Elsokkary

Prof. of Physical and Inorganic Chemistry, Housing &Building National Research Center

Assistant Prof. Dr. Doaa A. Ahmed

Assistant Prof. of Inorganic Chemistry, Women's College, Ain Shams University.

Assistant Prof. Dr. Maha R. Mohamed

Assistant Prof. of Inorganic Chemistry, Women's College, Ain Shams University.

Ain Shams University Women's College Chemistry Department

Effect of Some Industrial Wastes on The Physico-Chemical and Mechanical Properties of Hardened Cement Pastes

Thesis submitted to: Women's College, Ain Shams University

In the partial fulfillment for: Ph.D. Degree in Inorganic and Analytical chemistry

By Samar Mohamed Fathi

Thesis Supervisors:

Approved

Prof. Dr. Essam A. Kishar

Prof. of Inorganic Chemistry, Women's College,

Ain Shams University.

Prof. Dr. Tarek M. Elsokkary

Prof. of Physical and Inorganic Chemistry, Housing &Building National Research Center

Assistant Prof. Dr. Doaa A. Ahmed

Assistant Prof. of Inorganic Chemistry,

Women's College,

Ain Shams University.

Assistant Prof. Dr. Maha R. Mohamed

Assistant Prof. of Inorganic Chemistry, Women's College,

Ain Shams University.

Head of Chemistry

Department

Prof. Dr. Mansoura Ismail

Date of Examination: / /

Ain Shams University Women's College Chemistry Department

Student Name : Samar Mohamed Fathi

Scientific Degree : M.Sc.

Department : Chemistry Department

Name of Faculty : Women's College

University : Ain Shams University

ACKNOWLEDGMENT

I wish to express my gratitude to several people whose help and suggestions have been so valuable towards the completion of this work. I would like to thank **Prof. Dr.** Essam Abd El Aziz Kishar, Prof. of Inorganic Chemistry, Women's College, Ain Shams University, who has tirelessly supported and guided me throughout the course of this work with great patience. I wish to acknowledge with many thanks Prof. Dr. Tarek Mustafa Elsokkary, Prof. of Material Chemistry, Housing & Building National Research Center, for his guidance and for his useful comments during the research. Thanks are also due to Ass. Prof. Dr. Doaa A. Ahmed, Assistant Prof. of Inorganic Chemistry, Women's College, Ain Shams University, for her useful comments during the research and for her sincere guidance, encouragement and continuous supervision. Deepest thank is owed to Ass. Prof. Dr. Maha Rabee, Assistant Prof. of Inorganic Chemistry, Women's College, Ain Shams University, for her help.

I would like to dedicate this research work to my family. To my parents, who have always encouraged me to pursue my goals, always succeed, and never admit defeat. From them I have learned to be the best that I can be. To

my sisters and my husband who is my guide, my conscience and my best friends. Thank you for being a part of my life.

CONTENTS

CHAPTER I

INTRODUCTION

Abstract	I-II
I.A.I. Cement	1
I.A.2. Types of Portland cement	
1. Normal (ordinary) Portland cement (Type I)	2
2. Modified Portland cement (Type II)	
3.High-Early Strength (rapid-hardening) Portland cement (Type III)	3
4. Low-Heat Portland cement (Type IV)	3
5. Sulphate Resisting cement (Type V)	3
I.A.3. Properties and Hydration of the major constituents	4
I.A.3.1. Tricalcium silicate, C ₃ S	4
I.A.3.2. Dicalcium silicate, C ₂ S	5
I.A.3.3. Tricalcium aluminate, C ₃ A	5
I.A.3.4. Tetracalcium aluminoferrite, C ₄ AF	6
I.A.4. Factors affecting the rate of hydration	6
I.A.4.1. Age of past	6
I.A.4.2. Cement composition	7

I.A.4.3. Fineness of the cement	7
I.A.4.4. Water to cement ratio (W/C)	7
I.A.4.5. Temperature	7
I.A.4.6. Admixture	7
I.A.5.Blended Cement	8
I.A.5.1. Pozzolanic Materials	8
I.A.5.2. Cement kiln dust (CKD)	10
I.A.5.3. Ground granulated blast-furnace slag, GGBFS Processing of Blast-Furnace Slag	12
I.A.5.4. Silica fume, (SF)	14
I.B. Literature review	16
I.B.1. Hydration of cement	16
I.B.2. Effect of CKD on cement hydration	18
I.B.3. Effect of Ground granulated blast-furnace slag,	23
(GBFS) on hydration of cement	
I.B.4. Effect of SF on hydration of cement	24
I.C. Sulphate attack	28
Aim of the work	32

CHAPTER II

Material and Experimental Technique

II.A. Materials	33
II.A.1. Ordinary Portland cement, OPC	33
II.A.2. Granulated blast-furnace slag, GBFS	36
II.A.3. Cement kiln dust, CKD	36
II.A.4. Silica fume, SF	36
II.B. Preparation of cement pastes	37
II.B.1. Preparation of dry mixes	37
II.B.2. Mixing of cement paste	37
II.C. Methods of Investigations	39
II.C.1. Compressive strength	39
II.C.2.Stopping of hydration	40
II.C.3.Chemically combined water content (Wn%)	40
II.C.4. X-ray diffractometry	41

CHAPTER III

RESULTS & DISCUSSION

III.A. The systems MIA, MIB, MIC and MID cured in tap water	42
III.A.1. Compressive strength	42
III.A.2 Combined water	45
III.A.3 Phase composition	47
III.B.The systems MIA, MIB, MIC and MID cured in 5%	
MgSO ₄ solution	53
III.B.1 Compressive strength	53
III.B.2 Combined water	55
III.B.3 Phase composition	56
III.C. The systems MIIA, MIIB, MIIC and MIID cured in	
tap water	62
III.C.1 Compressive strength	62
III.C.2 Combined water	65
III.C.3 Phase composition	67
III.D. The systems MIIA, MIIB, MIIC and MIID cured in	
5% MgSO ₄ solution	73
III.D.1 Compressive strength	73
III.D.2 Combined water	75
III D 3 Phase composition	77

84
84
87
89
95
95
97
98
104
107
١

List of Tables

Table 1	Chemical composition of the used materials	34
Table 2	The mineralogical composition of the Portland	
	Cement used as calculated by Bouge equation	35
Table 3	Mix composition and designation.	39
Table 4	The composition and designation of the mixes in	
	the system of MIA, MIB, MIC and MID	43
Table 5	The compressive strength (Kg/cm ²) of mixes MIA,	
	MIB, MIC, MID and blank M ₀ cured in tap H ₂ O at	
	various hydration ages.	44
Table 6	The combined water (Wn,%) of mixes MIA, MIB,	
	MIC, MID and blank M ₀ cured in tap H ₂ O at various	
	hydration ages	46
Table 7	The compressive strength (Kg/cm ²) of mixes MIA,	
	MIB, MIC, MID and blank M ₀ cured in 5% MgSO ₄ at	
	various hydration ages	54
Table 8	The combined water (Wn,%) of mixes MIA, MIB,	
	MIC, MID and blank M ₀ cured in 5% MgSO ₄ at	
	various hydration ages	55
Table 9	The composition and designation of the mixes the	
	system of MIIA, MIIB, MIIC and MIID	62
Table 10	The compressive strength Kg/cm ² of mixes MIIA,	
	MIIB, MIIC, MIID and blank M_0 cured in tap H_2O at	64
	various hydration ages	