التعـبيـر عـن مصفوفة البروتين الفلزي فى شيخوخـة الجلــد

نوطئة للحصول على درجة الماجسنير في الأمراض الجلدية والنناسلية وأمراض النكورة

مقدمـــــة من

الطبيبة/مروة هاال مُحمد الكضري

(بكالوريوس الطب والجراحة) كلية الطب جامعة عين شمس

خت إشــــاف

الأستاذة الدكتورة/مي حسين السَّماحي

أسناذ الأمراض الجلدية والنناسلية وأمراض الذكورة كلية الطب – جامعة عين شمس

الدكتورة/ نجلاء سهير أحمد

أسناذ مساعد الباثولوجي كلية الطب – جامعة عين شمس

الدكتورة/ عزَّة عصمت مصطفى

مدرس الأمراض الجلدية و النناسلية وأمراض النكورة كلية الطب – حامعة عين شمس

> كلية الطب جامعة عين شمس ۲۰۱۲

Expression of Matrix Metalloproteinases in Skin Aging

Thesis

Submitted for Partial Fulfillment of Master Degree in Dermatology, Venereology and Andrology

Presented by

Marwa Helal Mohammed El Hadary

(M.B, B.Ch.) Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. May Hussein El Samahy

Professor of Dermatology, Venereology and Andrology | Faculty of Medicine – Ain Shams University |

Dr. Naglaa Samier Ahmed

Assistant Professor of Pathology Faculty of Medicine, Ain Shams University

Dr. Azza Esmat Mostafa

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine − Ain Shams University ☐

Faculty of Medicine
Ain Shams University
2014

Thanks to ATTAM for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I can hardly find the words to express my gratitude to **Prof. Dr. May Hussein El Samahy**, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for her continuous scientific guidance, enriching me with her vast experience, unlimited help and full provision of facilities. It is a great honor to work under her guidance and supervision.

I am delighted to express my deep gratitude and sincere thanks to **Dr. Naglaa Samier Ahmed**, Assistant Professor of pathology, Faculty of Medicine, Ain Shams University, for her great help, experienced guidance throughout the period of the work, kind supervision, and the precious time and effort.

I am greatly indebted to **Dr. Azza Esmat Mostafa**, Lecture of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for her scientific guidance, helpful cooperation, effective advice and in exhaustible patience throughout the entire work.

Special words of thanks are due to the subjects of this study for their agreements to be in this work.

I would like to express my sincere gratitude and thanks to my family who always provide me with great support and encouragement.

Marwa Helal

List of Contents

	Page
LIST OF ABBREVIATIONS	I
LIST OF TABLES	III
LIST OF FIGURES	V
Introduction	1
Aim of the Work	4
Review of literature	
E Chapter (1): Skin Aging	5
► Chapter (2): Matrix Metalloproteinases	59
Subjects and Methods	90
Results	96
Discussion	121
Conclusion and Recommendations	128
Summary	129
References	133
Arabic Summary	

List of Abbreviations

ADAMs	A disintegrin and metalloproteinases
AP-1	Activator protein-1
BCC	Basal cell carcinoma
bFGF	Basic fibroblast growth factor
bp	Base pairs
°C	Degree centigrade
cAMP	Cyclic adenosine monophosphate
CA-MMP	Cysteine array MMP = MMP-23A
Cdk	Cyclin dependent kinases
Су	cytoplasmic domain
DAB	Diaminobenzedine
DEJ	Dermal-epidermal junction
DHEA	Dehydroepiandrostrone
DHEAS	Dehydroepiandrostrone- Sulphate
DNA	Deoxyribonucleic acid
DOPA	Dihydroxyphenylalanine
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid
EGF	Epidermal growth factor
ERK	Extracellular signal-regulated kinases
FGF	Fibroplast growth factors
FN	fibronectin
Fu	Furin
GAGs	Glycosaminoglycans
GM-CSF	Granulocyte macrophage colony stimulating factor
GPI	Glycosylphosphatidylinositol
H&E	Hematoxylin and Eosin
HgCl2	Mercuric chloride
HS	Highly significant
Ig	Immunoglobulin
IGFBP	Insulin-growth factor binding protein
IL	Interleukin
JNK	c-Jun amino-terminal kinase
LCs	Langerhans cells
MAPk	Mitogen-activated protein kinases
MMPs	Matrix metalloproteinases
μm	Micrometer
mm	Millimeter

List of Abbreviations (Cont..)

mRNA	Messenger ribonucleic acid
mRNP	Messenger ribonucleoprotein
MT-MMPs	6 1
	Membrane-type MMPs
NADPH	Nicotinamide adenine dinucleotide phosphate
ND	Not determined yet
NE	Neutrophil elastase
NS	Non-significant
NF-ĸB	Nuclear factor kappa-light-chain-enhancer of activated B cells
$^{1}O_{2}$	Singlet oxygen
O_2	Superoxide radical
OG	O-glycosylated
,OH	Hydroxyl radical
ox-LDL	Oxidized low density lipoprotein
P	Probability value
PAF	Platelet activating factor
PBS	phosphate buffered saline
PDGF	Platelet derived growth factor
PGE 2	Prostaglandin E 2
RASI-1	Rheumatoid arthritis synovium inflamed-1=MMP-19
RECK	Reversion-inducing cysteine-rich protein with kazal motifs
ROS	Reactive oxygen species
S	Significant
S-S	Disulfide bond
SA	Signal anchor
SCC	Squamous cell carcinoma
SD	Standard deviation
SDS	Sodium dodecyl sulfate
-SH	Thiol-group (-SH)
SPSS	Statistical package for Social Science
TGF	Transforming growth factor
TIMPs	Tissue inhibitors of matrix metalloproteinases
TM	Transmembrane
TNF a	Tumour necrosis factor α
UV	Ultraviolet
VEGF	Vascular endothelial growth factor
Zn2+	Zinc
	Liniv

List of Tables

No.	Table	Page
1-	Characteristics of different skin phototypes	35
2-	Glogau's photoaging classifation	37
3-	The histopathology underlying the clinical features of photoaging	47
4-	Comparing photoaging to chronological aging	52-53
5-	Best known members of MMPs family	60-61
6-	Transcriptional regulation of selected MMPs	65
7-	Description of age and skin characteristics among group I	97
8-	Description of age and skin characteristics among group II	97
9-	Description of age and skin characteristics among group III	98
10-	Description of MMP-1 expression in epidermis and dermis among group I	101
11-	Description of MMP-9 expression in epidermis and dermis among group I	102
12-	Description of MMP-1 expression in epidermis and dermis among group II	103
13-	Description of MMP-9 expression in epidermis and dermis among group II	104
14-	Description of MMP-1 expression in epidermis and dermis among group III	105
15-	Description of MMP-9 expression in epidermis and dermis among group III	106

List of Tables (Cont..)

No.	Table	Page
16-	Comparison between the three study groups as regards MMP-1expression in epidermis and dermis.	108
17-	Comparison between the three study groups as regards MMP-9 expression in epidermis and dermis	110
18-	Correlations between epidermal MMP-1 and other markers among all cases	112
19-	Correlations between dermal MMP-1 and epidermal and dermal MMP-9	114
20-	Correlations between epidermal MMP-9 and dermal MMP-9	115
21-	Comparison between type III and IV Fitzpatrick skin photo- type as regards MMP-1 and MMP-9 expression in the study cases	117
22-	Comparison between type III and IV Fitzpatrick skin photo- type as regards MMP-1 and MMP-9 expression in group I.	117
23-	Comparison between type III and IV Fitzpatrick skin photo- type as regards MMP-1 and MMP-9 expression in group II	118
24-	Comparison between type III and IV Fitzpatrick skin photo- type as regards MMP-1 and MMP-9 expression in group III	118
25-	Comparison between type I and II Glogau's classification in group I as regards MMP-1 and MMP-9 expression	120

List of Figures

No.	Figure	Page
1-	Normal skin structure showing layers of epidermis, dermis and hypodermis	12
2-	Potential mechanisms of intrinsic skin aging.	18
3-	Expression wrinkles	20
4-	Gravitaional wrinkles	20
5-	Differences in skin structure between young and aged skin	27
6-	Effects of smoking on facial skin	30
7-	Elastotic wrinkles	36
8-	Atrophic response to photodamag	36
9-	The Glogau wrinkle scale	38
10-	The back of the hands of a 23-year-old woman (top left corner) without any signs of photoageing and of a 46-year-old woman (top right corner) with lentigines and fine wrinkles.	38
11-	The Histopathological comparison of different skin conditions	52
12-	Structural classification of human MMPs based on their domain organization	62
13-	Domain structure of secreted and membrane-bound Matrix metalloproteinases.	63
14-	Main characteristics of MMP inhibitors	67
15-	Structure of TIMP-1 and TIMP-2	68

List of Figures (Cont..)

No.	Figure	Page
16-	The three-dimensional structure of human MMP-1.	72
17-	Crystal structures of MMP-9.	77
18	Role of MMPs in skin aging	89
19-	Histological findings in group I	99
20-	Histological findings in group II	99
21-	Histological findings in group III	100
22-	The staining grades of MMP-1 in group I	101
23-	The staining grades of MMP-9 in group I.	102
24-	The staining grades of MMP-1 in group II.	103
25-	The staining grades of MMP-9 in group II.	104
26-	The staining grades of MMP-1 in group III	105
27-	The staining grades of MMP-9 in group III.	106
28-	Expression of MMP-1 in the epidermis of the three study groups.	108
29-	Expression of MMP-1 in the dermis of the three study groups.	109
30-	Expression of MMP-9 in the epidermis of the three study groups.	111
31-	Expression of MMP-9 in the dermis of the three study groups.	111

List of Figures (Cont..)

No.	Figure	Page
32-	Correlations between epidermal MMP-1 and dermal MMP-1.	112
33-	Correlations between epidermal MMP-1 and epidermal MMP-9.	113
34-	Correlations between epidermal MMP-1 and dermal MMP-9.	113
35-	Correlations between dermal MMP-1 and epidermal MMP-9.	114
36-	Correlations between dermal MMP-1 and dermal MMP - 9.	115
37-	Correlations between epidermal and dermal MMP-9.	116

INTRODUCTION

Cutaneous aging is a complex biological phenomenon affecting the different constituents of the skin ⁽¹⁾. There are two independent, clinically and biologically distinct, processes affecting the skin simultaneously. The first is the innate or intrinsic aging, 'the biologic clock' that affects the skin by slow, irreversible tissue degeneration. The second process is the extrinsic aging, which is the result of exposure to out-door elements, mainly, ultraviolet (UV) irradiation; namely 'the photoaging ⁽²⁾.

Intrinsic skin aging is characterized clinically by fine wrinkles, thin and dry skin, loss of underlying fat and hair loss. Histologically, such skin manifests epidermal and dermal atrophy, flattening of the epidermal rete ridges, as well as reduced numbers of fibroblasts and mast cells (3). In addition, characterized by thickened skin is collagen in aged disorganized fibrils. Besides, lower level of collagen is synthesized by aged fibroblasts. The ratio of collagen types found in human skin also changes with age. In young skin, collagen type I comprises 80% and collagen type III comprises about 15% of total skin collagen. In older skin, the ratio of type III to type I collagen increases, due to an appreciable loss of collagen type I (4).

Nevertheless, Photoaging affects sun-exposed areas and is characterized clinically by fine and coarse wrinkling,

roughness, dryness, laxity, telangiectasias, loss of tensile strength, pigmentary changes and the development of a variety of benign and malignant neoplasms ⁽⁵⁾. The histologic hallmark of photo-aging is dermal elastosis which largely consists of thickened, granular amorphous elastic structures. This elastotic material is postulated to result from direct ultraviolet-mediated damage to the dermal fibroblasts which then produce abnormal elastin, or it may result from chronic low-grade enzymatic digestion of extracellular matrix by proteases elicited by inflammatory mediators ⁽⁶⁾.

Normally, the level of collagen is maintained by ensuring a balance between collagen synthesis by fibroblasts in the dermis and enzymatic degradation by matrix metalloproteinases (MMPs). The later comprise a family of zinc-containing proteinases that are responsible for degrading extracellular proteins ⁽⁷⁾. MMPs are classified as collagenases, gelatinases, stromelysins and membrane-type MMPs according to their substrate specificities and whether they are secreted soluble proteins or bound to cell surface membrane ⁽⁸⁾.Collagenases-1 (MMP-1) degrades collagens, while gelatinases A and B (MMP-2 and MMP-9) degrade elastin. Other MMPs, such as stromelysin 1 (MMP-3), are involved both in the collagen and elastin degradation. MMP levels in skin increase as a function of age ⁽⁹⁾ and also as a response to UV irradiation ⁽¹⁰⁾.

Ultraviolet irradiation causes alternations of dermal collagen through two primary pathways: 1) stimulation of

collagen breakdown, resulting in fragmented, disorganized collagen and **2**) inhibition of procollagen biosynthesis, resulting in loss of collagen content. MMPs are key mediators of collagen degradation that is observed in photoaged skin. UV has been postulated to elevate at least three different MMPs in human skin namely; MMP-1, MMP-3 and MMP-9 (11). This induction of increased levels of MMPs is brought about by a series of events involving signaling mechanisms, deoxyribonucleic acid (DNA) and protein damage, and an intricate dynamic process of interaction between keratinocytes and fibroblasts (12,13).

It is evident that the activity of the MMPs is one of the keys of the skin aging and that these enzymes have thus to be the target of therapeutic activities ⁽¹⁴⁾. Our understanding of the complex process of skin aging has increased significantly in recent years. Elucidating the underlying mechanisms involved in skin aging is of paramount importance for the design of specific effective therapeutic and protective strategies.