

Comparative Study Between Extra Corporeal Shock Waves Lithotripsy and Ureteroscopic Stone Extraction in Management of Upper and Middle Ureteric Stones

Thesis

Submitted for Partial Fulfillment of Master Degree
in Urology

Amir Samuel Shawki

Supervised By

Prof.Dr.Abdelhamid Abdelkader Yousef

Professor of Urology Faculty of Medicine, Ain Shams University

Dr. Mohammed Ahmed Gamal

Lecturer of Urology Faculty of Medicine , Ain Shams University

> Faculty of Medicine Ain Shams University 2016

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Abdelhamid Abdelkader Yousef**, Professor of Urology Faculty of Medicine, Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mohammed Ahmed Gamal,** Lecturer of Urology Faculty of Medicine, Ain Shams

University for his sincere efforts, fruitful encouragement.

Also I would like to thank my Family and who stood behind me to finish this work and for their great support.

Amir Samuel Shawki

List of Contents

Title	Page No.	
List of Tables	Error! Bookmark not defined.	
List of Figures Error! Bookmark not defined		
List of Abbreviations	Error! Bookmark not defined.	
Introduction	1	
Aim of the study	4	
Review of Literature		
 Anatomy of the Ureter 	5	
Classification of urinary stones		
Diagnosis of Ureteric Stones		
	ve lithotripsy: technology,	
 Uretroscopy 	49	
Patients and Methods	74	
Results	86	
Discussion	106	
Summary	118	
Conclusion	120	
References		
Arabic Summary		

List of Tables

Table No.	Title Page N	0.
Table (1):	The Normal Ureteral Diameter	13
Table (2):	Plain X-ray characteristics	
Table (3):	Stones classified according to their etiology	
Table (4):	Stone composition	
Table (5):	Recommendations: Basic analysis	
Table (6):	Advantages, Disadvantages, and Relative	
	Indications for KUB, US, IVP, NCCT, and	
	MRI in the Evaluation of Stone Disease	32
Table (7):	Descriptive statistics for all the studied	
	patients.	86
Table (8):	Number of ESWL sessions among studied	
	cases in ESWL group.	87
Table (9):	Comparison between ESWL group and URS	
	group according to age, sex and BMI	90
Table (10):		
	group according to size and Hounsfield unit	91
Table (11):	1 0 1	
	group according to clearance rate and	
	complications	92
Table (12):	1	
	stones in ESWL group according to clearance	
T 11 (10)	rate and complications	95
Table (13):	1	
	stones in URS group according to clearance	00
Table (14):	rate and complications.	98
1 able (14):	Comparison between upper ureteric stones in ESWL group and upper ureteric stones in	
	URS group according to clearance rate and	
	complications	100
Table (15):		100
14010 (10).	ESWL group and mid ureteric stones in URS	
	group according to clearance rate and	
	complications.	102

List of Tables Cont...

Table No.	Title	Page No.
Table (16):	Relation between hounsfield unit of ESWL sessions.	

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Parts of the ureter	6
Figure (2):	The right ureter illustrated by retrograd	
 (a)	injection of contrast material.	
Figure (3):	Mean HU value of calcium oxalate	-
	calcium phosphate, and uric acid stone	
Figure (4):	Relationship between mean HU an	
	number of ESWL sessions	
Figure (5):	Electro hydraulic shock wave generation	
Figure (6):	Piezoelectric shock wave generation	
Figure (7):	Shows the electromagnetic shockway	
	generator with acoustic lens	37
Figure (8):	Shows the electromagnetic shockway	
	generator with focusing reflector	37
Figure (9):	Mechanisms of stone comminution	43
Figure (10):	Rigid Ureteroscope	51
Figure (11):	Modern semirigid ureteroscope wit	h
	separate working/irrigation channels	53
Figure (12):	Modern generation flexible	.e
	ureterorenoscope with bilateral 270)°
	maximal tip deflection	53
Figure (13):	Facial Dilators.	59
Figure (14):	One-step ureteral balloon dilator (white	e)
	attached to a locking screw syring	je
	(white).	60
Figure (15):	Ureteroscopic baskets, left to right: four	r-
	wire Segura basket, three-wire helica	al
	basket, tip less helical basket, tieless no	n
	helical basket.	62
Figure (16):	Standard three-pronged grasping forceps	
Figure (17):	Schematic illustration of the LithoClas	
	(Electromedical Systems, Kaufering	ŗ,
	Germany) handniece mechanism	64

List of Figures Cont...

Fig. No.	Title Page N	10.
Figure (18):	ESWL unit, Urology department, Ain Shams Hospitals.	70
Figure (19):	LithoClast	
Figure (20):	Distribution of sex among all studied	02
g (_ 0/1	· ·	87
Figure (21):	Number of ESWL sessions among studied	
	cases in ESWL group	88
Figure (22):	Outcome among all studied cases.	88
Figure (23):	Complications among all studied cases	89
Figure (24):	Comparison between ESWL group and	
	URS group according to clearance rate	94
Figure (25):	Comparison between ESWL group and	
	URS group according to complications	94
Figure (26):	Comparison between mid ureteric and	
	upper stones in ESWL group according to	0.5
T' (05)	clearance rate.	97
Figure (27):	Comparison between mid ureteric and	
	upper stones in ESWL group according to complications.	97
Figure (28):	Comparison between mid ureteric and	91
Figure (20):	upper stones in URS group according to	
	clearance rate.	99
Figure (29):	Comparison between mid ureteric and	00
- 1 g 0 (=0)	upper stones in URS group according to	
	complications.	99
Figure (30):	Comparison between upper ureteric	
	stones in ESWL group and upper ureteric	
	stones in URS group according to	
	clearance rate.	101
Figure (31):	Comparison between upper ureteric	
	stones in ESWL group and upper ureteric	
	stones in URS group according to	
	complications.	101

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (32):	Comparison between mid urete in ESWL group and mid ureterio	
Figure (33):	URS group according to clearance Comparison between mid urete in ESWL group and mid ureterio	ce rate 103 eric stones
Figure (34):	URS group according to complicate Relation between hounsfield number of ESWL sessions	ations 103 unit and

List of Abbreviations

Abb.	Full term
BMI	. Body Mass Index
	. Computed tomography scan
	. Extracorporeal shock wave lithotripsy
Fr	. French scale
HU	. Hounsfield unit
IV	. Intravenous
IVU	. Intravenous urography
KUB	. Kidney-ureter-bladder radiograph
MCCS	Modified Clavien Classification System
MRI	. Magnetic resonance imaging
NCCT	. Non-contrast spiral computed tomography
PAUS	. Pelvi abdominal ultra sound
PCNL	Percutaneous nephrolithotomy
PL	. pneumatic lithotripsy
SR URS	. Semi rigid ureteroscope
SSD	. Skin to stone distance
U/S	. Ultrasound
UPJ	Ureteropelvic junction
URS	. Ureteroscopy
UTI	. Urinary tract infection
UVJ	. Ureterovesical junction

Abstract

In our study we do comparison between extracorporeal shock wave lithotripsy and ureteroscopy in management of upper and mid ureteric calculi.

We concluded that ureteral stones 1cm or less in size can be treated safely and effectively by ESWL with a stone free rates more than pneumatic ureteroscopic lithotripsy, while in mid ureteral stones 1 cm or less in size can be treated safely and effectively by ESWL with a stone free rates equal to pneumatic ureteroscopic lithotripsy.

Most of the complications are minor and can be treated either conservatively or endourologically without further morbidity or mortality. ESWL and URS lithotripsy failures can be salvaged by further endourological procedures.

Key words: Extra Corporeal Shock Waves Lithotripsy- Ureteroscopic Stone Extraction- Middle Ureteric Stones

Introduction

atients with urolithiasis constitute an important part of urological practice. evervdav The optimal clinical management of this disease requires knowledge of the diagnostic procedures, the rational treatment of acute stone colic, stone expulsive treatment and the modern principles of stone removal. Management of renal and ureteric stones includes pharmacotherapy, extra corporeal shock waves lithotripsy (ESWL), percutaneous nephrolithotomy (PCNL), flexible and rigid ureteroscopy and open surgery (Tiselius et al., 2011).

In 1980, **Dr. Christian Chaussy** of the University of Munich was the first to treat renal stone in humans using a new concept termed extracorporeal shock wave lithotripsy. Using this technology, he determined that patients could have renal or ureteral stones removed without the need of an incision or skin puncture, due to its non-invasive nature ESWL has completely changed therapeutic strategies for urolithiasis, The first lithotripter model (Dornier HM-1TM) was soon replaced by the (Dornier HM-2TM) IN 1982, and the (Dornier HM-3TM) in 1984. The HM-3 was first used in the United States on February 23rd, 1984 at Methodist Hospital in Indianapolis. With technological advances in lithotripter models, ESWL has become the preferred line of treatment for renal & upper ureteric calculi of <2 cm in diameter (*Andreas et al.*, 2006).

The outcome of ESWL depends on many factors, including stone size, location, composition, density (Hounsfield unit: HU), and the number of shocks delivered & skin to stone distance (SSD) (Tan et al., 2002).

Extracorporeal shock lithotripsy (ESWL) wave represents a well established and effective therapeutical method for ureteric stones (Segura et al., 1997).

The overall success rates have been reported to be or even overcoming 90% in many prospective studies (Wang et al., 2011).

ESWL is a safe, non-invasive and effective method to treat a majority of stones with a minimal number of complications (Skolarikos et al., 2006).

Even after successful treatment in terms of stone fragmentation, side-effects like renal colic and ureteric obstruction can occur. In rare cases a 'stein strasse' can develop, defined as an accumulation of fragments behind a leading, obstructing fragment (Skolarikos et al., 2006).

The introduction of ureteroscope, as well as development of intracorporeal lithotripsy method has substantially improved the ureteroscopic (URS) manipulated stone free rate (71 - 78%)and significantly decreased the complication rate (Youssef et al., 2009).

A combination of ureteroroscopy and intracorporeal lithotripsy has proven to be a viable alternative to ESWL (Tipu et al., 2007).

ESWL remains the primary treatment modality for upper and middle ureteric calculi. However, some urologists have recommended ureteroscopic manipulation as first line treatment (Leistner et al., 2007).

The debate still continues whether **ESWL** ureteroscopic manipulation should be the first line of treatment for upper and middle ureteric stone.

AIM OF THE STUDY

The aim of this study is to compare between extracorporeal shock wave lithotripsy (ESWL) and ureteroscopic (URS) manipulation in the treatment of upper and middle ureteric stones as regard the stone free rate and the complications.