Patients With Spinal Cord Injury

Developing Life Style Modification Model For Patients With Spinal Cord Injury

Thesis

Submitted for partial fulfillment of the Requirement Master

Degree

In

Nursing sciences (Medical – Surgical Nursing) Under Supervision of

Prof. Dr. Magda Abd El-Aziz Mohamed

Professor of Medical Surgical Nursing, Faculty of Nursing, Ain Shams University

Assist. Prof. Dr. Amany Mohamed Safwat

Assistant Professor of Medical Surgical Nursing Department, Faculty of Nursing, Ain Shams University

Dr. Nesssrien Osman Elsayed

Lecturer of Medical Surgical Nursing Faculty of Nursing, Ain Shams University Faculty of Nursing

Ain Shams University

2007

Developing Life Style Modification Model For Patients With Spinal Cord Injury

Thesis

Submitted for partial fulfillment of the Requirement Master Degree

In

Nursing sciences

(Medical – Surgical Nursing)

By

Asmaa Said Ali khalil

Demonstrator in medical surgical nursing
Faculty of nursing
Ain Shams University

Faculty of Nursing
Ain Shams University
2007

Title	Page
List of abbreviations	
List of tables	
List of figures	
Introduction	1
Aim of the work	6
Review of Literature	7
 Overview of spinal cord injury 	7
 Anatomy and physiology of the nervous system 	7
 Anatomy of the spinal cord 	8
 Definition of the spinal cord injury 	10
 Incidence & prevalence of spinal cord Injury 	12
Pathophysiology	14
 Etiology and risk factors 	17
Classification of spinal cord injury	18
 Clinical manifestations of spinal cord injury 	21
• Diagnostic studies and procedures	26
Complications of spinal cord injury	30
Medical management	33
Surgical management	39
Nursing management	
• Overview of life styles	63
 Subjects and Methods 	81
 Results 	92
 Discussion 	148
 Conclusion and Recommendations 	165
• Summary	168
References	174
Appendices	
Arabic summary	

List of Abbreviations

ABG : Arterial blood gases

AD : Autonomic dysreflexia

ASA : Anterior spinal artery

AVMs : Arteriovenous malformations

BP : Blood pressure

BUN : Blood urea nitrogenCBC : Complete blood count

CHD : Chronic heart disease

CNS : Central nervous system

COPD: Chronic obstructive pulmonary disease

CSF : Cerebrospinal fluid

CT : Computed tomographyDNA : Deoxyribonucleic acid

DVT : Deep venous thrombosis

ECG : Electrocardiogram

EEG : Electroencephalogram

HCT : HaematocritHGB : Hemoglobin

L1-L2 : Lumbar1-lumbar2 LTGs : Long term goals

MRI : Magnetic resonance imaging

NG : Nasogastric tube

NPO: Nothing per mouth

NSAID: Non-steroidal anti-inflammatory drugs

NT-SCI : Non-traumatic spinal cord injury

OTC : Over the counter

PE : Pulmonary embolism

PET : Positron emission tomography

PNS : Peripheral nervous system
PTT : Partial thromboplastin time

ROM : Range of motion

SCC : Spinal cord compression

SCI : Spinal cord injury

SIADH : Syndrome of inappropriate antidiuritic hormone

STGs : Short term goals

TB : Tuberculosis

TCD : Transcranial Doppler Sonography

Temp : Temperature

TPN: Total parenteral nutrition

UTI : Urinary tract infection

VS : Vital signs

WNL: Within normal limit

List of Tables

	Title	Page
Table (1)	Sociodemographic characteristics of patients with	
	spinal cord injury under study.	93
Table (2)	Percentage distribution of patients with spinal cord	
	injury under study as related to their diagnosis.	95
Table (3)	Percentage distribution of patients with spinal cord	
	injury under study as regards their complain	
	of pain (pre and post)	98
Table (4a)	Percentage distribution of right side muscle	
	strength of patients under study (pre and post	
	phase).	102
Table (4b)	Percentage distribution of left side muscle	
	strength of patients under study (pre and post	104
	phase).	104
Table (5)	Total score of patient's muscle strength with spinal	100
T. 11 (6.)	cord injury (pre and post phase).	106
Table (6a)	Percentage distribution of superficial sensation in	
	right side for patients under the study (pre and post	107
T-11- ((1-)	phase).	107
Table (6b)	Percentage distribution of superficial sensation in	
	left side for patients under the study (pre and post	100
Table (7)	phase).	109
Table (7)	Percentage distribution of deep sensations in left	
	side for patients under the study (pre and post	112
T 11 (0)	phase).	112
Table (8a)	Percentage distribution of deep tendon reflexes in	
	right side of upper limb for patients under the study	111
Toble (9h)	(pre and post phase). Percentage distribution of deep tenden reflexes in	114
Table (8b)	Percentage distribution of deep tendon reflexes in	
	left side of upper limb for patients under the study	115
Tale (0)	(pre and post phase Percentage distribution of deep tendon reflexes in	115
Tale (9)	Percentage distribution of deep tendon reflexes in	110

	Title	Page
	right and left side of lower limb for patients under	
	the study (pre and post phase).	
Table (10)	Percentage distribution of the patients as regards	
	their physical assessment (respiration and	
	circulation) (pre and post phase).	118
Table (11)	Percentage distribution of the patients as regards	
	their physical assessment (urinary and bowel	
	elimination) (pre and post phase).	120
Table (12)	Percentage distribution of the patients as regards	
	their physical assessment (musculoskeletal system	
	and neurological responses) (pre and post phase).	122
Table (13)	Percentage distribution of patient's knowledge	
	about spinal cord injury (pre and post phase).	124
Table (14)	Perception of the patients under study to non-	
	compliance for the therapeutic regimen (pre and	
	post phase).	128
Table (15)	Total score level of patients' knowledge under	
	study (pre and post phase).	132
Table (16)	Mean scores of patient's knowledge with Spinal	
	cord injury under study (pre and post phase).	135
Table (17)	Total percentage distribution of knowledge related	
	to items of life style (pre and post phase).	17
Table (18)	Correlation between patient's life style and their	
	overall patient's knowledge (pre and post phase).	140
Table (19)	Correlation between patient's life style and their	
	educational level (pre and post phase).	141
Table (20)	Level of independence in daily living activities	
	among patients as regard to Barthel Index scale	
	(pre and post phase).	142
Table (21)	Correlation between daily living activities (Barthel	
	Index) score and total score of patient's life style	
	with spinal cord injury (pre and post phase)	145

	Title	Page
Table (22)	Relation between patient's knowledge about Spinal	
	Cord Injury and their daily Living Activities (pre	
	and post phase).	147

List of Figures

	Title	Page
Figure (1)	Percentage distribution of patients with	
	spinal cord injury under study as related to	
	chronic diseases.	96
Figure (2)	Percentage distribution of patients with	
	spinal cord injury under study as related to	
	past history of the surgery	97
Figure (3)	Percentage distribution of patients with	
	spinal cord injury under study as related to	
	medical and family history of tumor.	97
Figure (4)	Percentage distribution of patients with	
	spinal cord injury under study as related to	
	their complain of pain (severity of pain).	99
Figure (5)	Percentage distribution of patients with	
	spinal cord injury under study as related to	
	their complain of pain (factors relieving	
	pain).	101
Figure (6)	Difference between pre and post stage of	
	the patients under the study as related to	
	deep sensations in upper limb right side	111
Figure (7)	Difference between pre and post stage of	
	the patients under the study as related to	
	deep sensations in lower limb right side	111
Figure (8)	Perception of the patients under study to	
	effective of non- compliance for the	
	therapeutic regimen (pre and post phase).	127
Figure (9)	Percentage distribution of patient's	
	knowledge (pre and post operative)	129
Figure (10)	Percentage distribution of patient's	
	knowledge as related to psychological	129

	Title	Page
	impression (pre and post operative)	
Figure (11)	Percentage distribution of patient's	
	knowledge as related to occurrence of	
	muscle spasticity and following up with	
	physiotherapist (post surgery).	130
Figure (12)	Percentage distribution of patient's	
	knowledge as related to knowledge about	
	types of physical exercise and knowledge	
	on how to prevent recurrence (post	
	surgery)	131
Figure (13)	Difference between pre and post stage as	
	related to overall patient's knowledge	134
Figure (14)	Overall patient's daily living activities	
	according to Barthel Index Scale (pre and	
	post phase).	146

Introduction

Spinal cord injury (SCI) is an insult to the spinal cord resulting in a change, either temporary or permanent, in its normal motor, sensory, or autonomic function. Some persons lose the ability to use their legs and lower body only (paraplegic), while others lose ability from the neck down (quadriplegic). SCI often results in significant neurologic dysfunction and disability. (Spinal Cord Injury Information Network, 2006)

An annual incidence of 15 to 40 traumatic SCI cases per million populations has been reported worldwide. In Egypt, the Information Center in Ain-Shams University Hospital reported that 360 cases with spinal cord injury where admitted in May, June and July 2007 and out of them, 60% were with lumbar disk, 10% with cervical disk, 10%with spinal cord tumor, 20% were with infectious diseases as (abscess, hemorrhage, haematoma and inflammation). The incidence of spinal cord injury in the United States is 450,000 people living with a spinal cord injury (Neurosurgical Association, 2005).

Sharon (2000) mentioned that Spinal cord trauma can be caused by any number of injuries to the spine that can result from motor vehicle accidents, falls, sports injuries, industrial accidents, gunshot wounds, assault, and others. Spinal cord injuries are classified by the mechanism of injury, skeletal and neurologic level of mechanism, and completeness or degree of injury.

SCI is classified according to the person's type of loss of motor and sensory function, the following are the main types of classifications: quadriplegia involves loss of movement and sensation in all four limbs (arms and legs), paraplegia involves loss of movement and sensation in the lower half of the body, triplegia involves the loss of movement and sensation in one arm and both legs and usually results from incomplete SCI (Ohio State University Medical Center, 2004).

As regards symptoms, the National Spinal Cord Injury Association (2001) mentioned that symptoms of spinal cord damage usually appear immediately after the injury. Symptoms can develop slowly, however, if an infection or tumor is gradually increasing pressure on the spinal cord, they may include weakness, poor coordination or paralysis, particularly below the level of the injury, numbness, tingling, or loss of sensation, loss of bowel or bladder control and pain. Diagnosis identified that, a person may suffer from injury to the spinal cord in a number of ways, automobile accidents, gunshot wounds, and other forms of violence often inflict severe damage to the spinal cord, but tumors, degenerative diseases, and infections also can impair the functions of the spinal cord and its branches Sharon, (1998).

Regarding to treatment, **Dincher (1999)** mentioned that treatment of a spinal cord injury may be medical or surgical. The initial goals for the patient with spinal cord injury are to saving the patient's life and preventing further cord injury. the medical management of the patient with a spinal cord injury actually begins before the patient reaches the hospital, the

initial assessment of the patient involves ensuring the patency of the airway, adequate breathing, and circulation. If the person is unconscious or is unable to maintain an airway, the chin lift or jaw-thrust maneuver should be used to establish an airway.

The usual treatment for spinal cord tumors is surgery with or without radiation and chemotherapy. The dose and drug choice depend upon the type of tumor and location. The decision to perform surgery on a patient with a spinal cord injury often depends on certain criteria, which include evidence of cord compression, progressive neurologic deficit, compound fracture of the vertebrae, presence of bony fragments that may dislodge and penetrate the cord and penetrating wounds of the spinal cord or surrounding structures (gunshot, knife wound) (Schattake, 2002).

In relation to nursing management, the National Institute of Health (2006), stated that the nurse who cares for the SCI patient during the acute phase provides the assessment, implementation of routine care, and critical interventions necessary for survival. Although this group of patients require the coordinated efforts of a multidisciplinary team for rehabilitation, rehabilitation after spinal cord injury seeks to prevent complications, promote recovery, and make the most of remaining functions. As reported by (Perry, 2005). Rehabilitation is a complex and long-term process. It requires a team of professionals, including a neurologist, physiatrist or rehabilitation specialist, physical therapist, and occupational therapist.

Regarding to life style, **Smith (2007)** define life style, as a way of life or style of living that reflects the attitudes and values of a person or group. Individuals' healthy and unhealthy habits ultimately determine their health and life expectancy. For individuals with spinal cord injuries, healthy habits include physical activity appropriate to their neurologic level of injury. At a minimum, this means performing range-of-motion and, if possible, voluntary muscle exercises. Other healthy habits include maintaining regular, adequate bowel programs and avoiding excessive constipation. A good bladder management program, preventing urinary tract infections, and preventing backup of urine to the kidneys will help sustain healthy kidney function into older age. Healthy diet and proper nutrition also are important.

A diet low in fat and processed carbohydrates, high in complex carbohydrates and protein is important. A healthy diet also includes sufficient fiber to promote proper bowel function as well as helping to maintain good bowel programs. For healthy lungs, avoid cigarette smoking and secondhand smoke. Finally, annual checkups with a physician familiar with spinal cord injury issues are beneficial and provide the opportunity to gain additional information about staying healthy. (Sharon, 2006).

There are many different factors influencing the health and life expectancy of individuals with spinal cord injuries. Each individual needs to decide how she/he can improve her/his health and take steps to improve it; this can be done individually, in a group setting, or in concert with a health care provider familiar with spinal cord injury. You are on the right

track with these questions. I encourage you to continue pursuing information about what you can do to have a healthy life with fewer medical problems. I applaud your decision to take an active role in adopting and maintaining a healthy life style (Lewis, 2005).

Significance of the Study

Traumatic injuries are a major public health problem imposing greater burden on modern society than other diseases. As a result of increased the rate of morbidity and mortality of spinal cord injury in underdeveloped countries in which , 1400 cases are admitted annually in neuro surgery debartmants at Ain Shams Universty Hospital and most traumas to the spinal cord injury cause permanent disability or loss of movement (paralysis) and sensation below the site of injury.

Otherwise, from the clinical experience and observation for the actual situation it is obvious that SCI patients have knowledge deficit about the disease some of patients have poorly performance of ADL and characterized by unhealthy lifestyles. So this study have been conducted to assess knowledge and perception, lifestyles, activities of daily living (needs) for patients with SCI (Information Center in Ain Shams University Hospital, 2007).