

Cytokeratin-18 Fragment Level As a Biomarker of Non-Alcoholic Fatty Liver Disease In Egyptian Patients With Type II Diabetes Mellitus

Thesis

Submitted for Partial Fulfillment of Master degree in Internal Medicine

By

Ibrahim Mohamed Ibrahim Ahmed Attia MB.B.Ch. Ain Shams University

Under supervision of **Prof. Tarek Mohamed Yossef**

Professor of Gastroenterology and Internal Medicine Faculty of Medicine -Ain Shams University

Dr. Maha Mohsen Mohamed

Assistant Professor of Gastroenterology and Internal Medicine Faculty of Medicine -Ain Shams University

Dr. Mohamed Osama Aly

Lecturer of Gastroenterology and Internal Medicine Faculty of Medicine -Ain Shams University

> Faculty of Medicine Lin Shams University 2017

سورة البقرة الآية: ٣٢

First, I feel always indebted to ALLAH, the Most Kind and the Most Merciful.

I would like also to express my deep appreciation and gratitude to **Prof. Dr./ Tarek Mohamed Youssef**, Professor of Internal Medicine, Faculty of Medicine – Ain Shams University, for his unlimited help, great efforts and time he has devoted to accomplish this work. I really have the honor to complete this work under his supervision.

I am deeply grateful to **Prof.Dr./ Maha**Mohsen Mohamed Assistant Professor of Internal
Medicine, Faculty of Medicine – Ain Shams
University, for her unlimited help and giving me
the privilege to work under her supervision. Her
care and support are really valuable and precious.

I would like also to express my deep appreciation and gratitude to **Dr./Mohamed Osama Ally,** Lecturer of Internal Medicine, Faculty of Medicine – Ain Shams University, for his care and support, also for the efforts and time he has devoted to accomplish this work.

Finally, I wish to extend my thanks to my **Family**, especially my dear **Parents** and **Wife** for their care and support.

Ibrahim Attia

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1
Aim of the Work	5
Review of Literature	
Non-Alcoholic Fatty Liver Disease	6
 NAFLD and T2DM 	71
Cytokeratin	96
Subjects and Methods	106
Results	117
Discussion	132
Summary	139
Conclusion	142
Recommendations	143
References	144
Arabic Summary	

List of Tables

Table No.	Title Page N	No.
Table (1):	The spectrum of NAFLD and concurrent	
	diseases	7
Table (2):	Secondary causes of NAFLD	10
Table (3):	Working classification of non-alcoholic fatty	
	liver disease	
Table (4):	Brunt grading system for NASH	45
Table (5):	Brunt staging system for NASH	45
Table (6):	NASH Clinical Research Network Scoring	
	System for NAFLD.	46
Table (7):	Protocol for a comprehensive evaluation of	
	suspected NAFLD patients	63
Table (8):	Types of cytokeratin and its origin	97
Table (9):	Comparison between groups as regard	
	demographic data, BMI and waist	
	circumference	118
Table (10):	Comparison between groups as regards CBC	119
Table (11):	Comparison between groups as regard Liver	
	Function tests and bleeding profile	120
Table (12):	Comparison between groups as regard lipid	
	profile	122
Table (13):	Comparison between groups as regard HbA1c:	123
Table (14):	Comparison between groups as regard kidney	
	function tests	123
Table (15):	Comparison between groups as regard FLI,	
	HSI and NFS	124
Table (16):	Comparison between groups as regard CK-18	125
Table (17):	Correlations between CK-18 and other	
	laboratory data	126
Table (18):	Correlations between clinical parameters	
	and FLI score	130
Table (19):	Cutoff value of serum CK-18 in NAFLD	131

List of Figures

Fig. No.	Title Page N	o.
Figure (1):	Non-alcoholic fatty liver disease (NAFLD) exists as a spectrum that includes NASH, which constitutes about one-third of cases	21
Figure (2):	Overview at the pathogenesis of nonalcoholic fatty liver disease (NAFLD)	
Figure (3):	Non-alcoholic fatty liver (NAFL). In this case of mild NAFL steatosis is mainly macrovesicular and is present in a predominantly perivenular (acinar zone	
Figure (4):	3) distribution (Haematoxylin and eosin) Nonalcoholic fatty liver disease: microvesicular steatosis in most hepatocytes, while one shows macrovesicular steatosis (arrow)	40
	(hematoxylin and eosin, ×400)	41
Figure (5):	Non-alcoholic steatohepatitis (NASH)	
Figure (6):	Periportal fibrosis in non-alcoholic	
	steatohepatitis	43
Figure (7):	Normal liver	53
Figure (8):	Diffuse fatty change of liver. In this ultrasound image of the liver there is	
	diffuse increase of liver echogenicity	
Figure (9):	Diffuse fatty liver with focal fatty sparing	54
Figure (10):	Focal fatty change of liver	54
Figure (11):	Focal fatty change of liver	55
Figure (12):	Diagnosis of NAFLD in 2016	61
Figure (13):	Diagnostic flow-chart to assess and monitor disease severity in the presence of suspected NAFLD and metabolic risk	
Figure (14):	factors	
	resistance and hyperglycaemia	77

List of Figures (Cont...)

Fig. No.	Title Page 1	No.
Figure (15):	Schematic diagram indicating proposed pathogenic process by which type 2	
	diabetes exacerbates NAFLD and how	
	NAFLD may lead to type 2 diabetes and	
	suboptimal glycemic control.	81
Figure (16):	Molecular structure of CKs	98
Figure (17):	Cytokeratin release in apoptosis	101
Figure (18):	Sites of cleavage of cytokeratin	
Figure (19):	CK18 and M30-antibod	104
Figure (20):	Comparison between groups as regards	
O	CK-18	125
Figure (21):	Serum CK-18 shows significant positive	
_	correlation with waist circumference	128
Figure (22):	Serum CK-18 shows significant positive	
	correlation with triglycerides	129
Figure (23):	Serum CK-18 shows significant positive	
_	correlation with FLI	129
Figure (24):	ROC curve showing the diagnostic	
	performance of serum CK-18 as a marker	
	of NAFLD.	131

List of Abbreviations

Abb.	Full term
4HNE	4-hydroxy-2-nonenal
	American Association of Studying Liver Diseases
	Abetalipoproteinemia
	Apo Lipoprotein B 100
ApoB48	Apo Lipoprotein B 48
ACC	Acetyl CO-A Carboxylase
	American College of Gastroenterology
ACO	Acetyl CO-A
	Adenosine di-phosphate
	Alcoholic fatty liver disease
	American Gastroenterological Association
	Advanced glycosylation end-products
AIDS	Acquired immunodefidiency syndrome
<i>ALT</i>	Alanine Aminotransferase
<i>AMPK</i>	AMP-Activated Kinase
AST	Aspartate aminotransferase
ATF 6	Activating transcription factor 6
ATP	Adenosine triphosphate
BMI	Body mass index
<i>CBC</i>	Complete blood count
CCL2	Chemokine Ligand-2
	Chemokine receptor
<i>CK</i>	Cytokeratin
CK-18	Cytokeratin-18 fragments
<i>CKD</i>	Chronic kidney disease
<i>CRN</i>	Clinical Research Network
<i>CRP</i>	C-reactive protein
CT	Computed Tomography.
<i>CTGF</i>	Connective tissue growth factor

Abb.	Full term
<i>CVD</i>	. Cardiovascular disease
<i>DAG</i>	. Diacylglycerol
DGAT1	. Diacylglycerol O-acyl-transferase
<i>DNA</i>	. Deoxyribonucleic acid
<i>DNL</i>	. De Novo Lipogenesis
<i>DPP-IV</i>	. Dipeptidyl peptidase IV
<i>EASD</i>	. European Association for the Study of Diabetes
<i>EASL</i>	. European Association for the Study of the Liver
<i>EASO</i>	. European Association for the Study of Obesity
eGFR	estimated glomerular filtration rate
<i>ELF</i>	. Enhanced liver fibrosis
<i>ELISA</i>	. Enzyme Linked Immuno Sorbent Assay
<i>ER</i>	$. Endoplasmic\ reticulum$
<i>ETC</i>	.Electron Transport Chain
<i>EMA</i>	.European medicines agency
<i>F</i>	. Fibrosis stage
<i>FC</i>	.Free cholesterol
FCHL	.Familial combined hyperlipidemia
<i>FDA</i>	Food and Drug Administration
<i>FFA</i>	. Free fatty acid
<i>FHBL</i>	. Familial hypobetalipoproteinemia
	. Fibrosis 4 calculator
	. Fatty liver index
FOXO1	Forkhead box protein O1
FxR	. Farnesoid x receptor
<i>G6Pase</i>	. Glucose-6-phosphatase
<i>GGT</i>	. Gamma glutamyl transferase
GLP 1	.Glucagon like peptide 1
<i>GLUT</i>	. Glucose transporter
<i>GS</i>	. Glycogen synthase

Abb.	Full term
GSD	Glycogen storage disease
GSK3	Glycogen synthase kinase-3
<i>GWAS</i>	Genome-Wide association study
HAART	Highly Active Antiretroviral Drugs
HbA1c	Glycosylated hemoglobin
HBsAg	Hepatitis B Surface Antigen
<i>HCC</i>	Hepatocellular carcinoma
<i>HCV</i>	Hepatitis C Virus
HDL	High-density lipoprotein
<i>HFC</i>	Hepatic fat content
HIV	Human immunodeficiency virus
HMG-CoA	Hydroxy-3-methyl glutaryl-coenzyme A
HOMA-IR	Homeostasis model assessment of insulin
	resistance
HR	Hazard ratio
HSCs	Hepatic stellate cells
HSI	Hepatic steatosis index
<i>IFG</i>	Impaired fasting glucose
<i>IGT</i>	Impaired glucose tolerance
<i>IKK-β</i>	Inhibitor of nuclear factor κB kinase- eta
<i>IL6</i>	Interleukin 6
<i>IR</i>	Insulin resistance
<i>IRE 1α</i>	Inositol-requiring protein 1 α
<i>IRS</i>	Insulin receptor substrates
<i>IRS2</i>	Insulin receptor substrate-2
<i>IRTK</i>	Insulin receptor tyrosine kinase
JI	Jejunoileal
JNK-1	Jun N-Terminal Kinase -1
KCs	Kupffer Cells

Abb.	Full term
<i>LB</i>	Liver biopsy
LDL-C	Low Density Lipoprotein-Cholesterol
<i>LFTs</i>	Liver function tests
LOXL2	Anti-lysyl oxidase-like monoclonal antibodies
<i>MDA</i>	. Malondialdehyde
<i>MDF</i>	Mitochondrial dysfunction
MetS	.Metabolic syndrome
MRI	Magnetic resonance imaging
	Messenger Ribonucleic Acid
MRS	Magnetic resonance spectroscopy
<i>MTTP</i>	Microsomal triglyceride transfer protein
<i>MyD88</i>	Myeloid differentiation factor 88
<i>NAFL</i>	Non-alcoholic fatty liver
<i>NAFLD</i>	Non alcoholic fatty liver disease
<i>NAS</i>	NAFLD Activity Score
NASH CRN	Nonalcoholic Steatohepatitis Clinical Research Network
<i>NASH</i>	Non Alcoholic Steatohepatitis
	NAFLD fibrosis score
	.Nuclear factor kappa B
	Non-NASH fatty liver
	Negative predictive value
OGTT	Oral glucose tolerance test
OR	Odds Ratio
PASH	.PNPLA3-associated steatohepatitis
	.Pyruvate carboxylase
	3-phosphoinositide-dependent protein kinase 1
	. Phosphoenol pyruvate carboxykinase

Abb.	Full term
PEPCK	Phosphoenolpyruvate
<i>PERK</i>	Protein kinase RNA-like ER kinase
PI(3)K	Phosphatidylinositol-3-OH kinase
<i>PIP</i> 3	Phosphatidylinositol (3,4,5)-triphosphate
PKC ε	Protein kinase $Carepsilon$
PNPLA3	Patatin like phospholipase domain containing protein
<i>PPAR</i>	Peroxisome proliferator-activated receptor
PPARs	Peroxisomal Proliferator Activated Receptors
<i>PPAR-α</i>	Peroxisome-proliferator-activated receptor α
<i>PPAR-γ</i>	Peroxisome-proliferator-activated receptor γ
$PPAR-\delta$	Peroxisome-proliferator-activated receptor δ
<i>PPV</i>	Positive predictive value
<i>PPV</i>	Positive predictive value
PUFA	Polyunsaturated fatty acids
<i>RCT</i>	Randomized controlled trials
<i>REC</i>	Research Ethical Committee
<i>RNA</i>	Ribonucleic acid
<i>RNS</i>	Reactive nitrogen species
<i>ROC</i>	Receiver operating characteristic curve
<i>ROS</i>	Reactive Oxygen Species
<i>SAF</i>	Steatosis, activity and fibrosis
<i>SD</i>	Standard deviation
SFA	Saturated fatty acids
SGLT2	Sodium glucose cotransporter2
SOCS3	Suppressor of Cytokine Signaling
SREBP	Sterol Regulatory Element Binding Protein
SU	Sulfonylurea
T2 DM	Type 2 diabetes mellitus

Abb.	Full term
<i>TAG</i>	. Triacylglycerol
TGF1,β	. Tumor growth factor, β
<i>TGF-β</i>	. Tissue growth factor eta
TIMP 1	Tissue-Inhibited matrix Metalloproteinase Inhibitor-1
<i>TIRAP</i>	Toll/IL-1 receptor domain containing adaptor protein
<i>TLR</i>	. Toll-like receptor
TLR-4	Toll like receptor-4
TM6SF2	Trans-membrane 6 superfamily 2
<i>TNF</i>	.Tumor necrosis factor
TNF-α	. Tumor necrosis factor-α
<i>TPN</i>	Total parenteral nutrition
TZDs	. Thiazolidinediones
<i>UDCA</i>	. Ursodeoxycholic acid
<i>UPR</i>	. Unfolded protein response
<i>US</i>	. Ultrasonography
<i>USA</i>	. United Status of America
<i>VLDL</i>	. Very low density lipoprotein

Abstract

T2DM patients are insulin resistant, often obese, dyslipidemic, display increased liver enzymes and tend to accumulate hepatic fat independently of BMI. The prevalence of NAFLD is also higher in person at risk of T2DM. Furthermore, IR and T2DM are among the strongest predictors of the progression of NAFLD to advance fibrosis and cirrhosis. Also, HCC is twice more likely to develop in individuals with T2DM.

Liver biopsy is the only reliable way of diagnosis and staging NAFLD, especially NASH, but its invasive nature limits its use. Moreover, it is prone to complications, some minor, such as pain, others more severe with a recorded risk of death of 0.01%. So, the need for non-invasive diagnostic tool for NAFLD became insidious.

Plasma-caspase-generated cytokeratin – 18 fragments (CK -18) has been proposed as a non invasive alternative and highly specific for NAFLD.

Keywords: Ursodeoxycholic acid, Unfolded protein response, Ultrasonography, United Status of America

Introduction

AFLD has become one of the most common forms of chronic liver disease worldwide, accounting for 20-40 % of the general population. NAFLD represent a continuum of hepatic injuries, which progress from simple fatty liver (NAFL) to steatohepatitis (NASH), liver cirrhosis or even HCC (Eliades and Spyron, 2015).

It is apparently more slowly progressive than other chronic liver diseases, such as alcohol or viral-induced disease (Fassio et al., 2004). However, because NAFLD is so common, occurring in 1 out of 3 persons in the developed world (Bellentani et al., 2010), it is the 3rd cause of liver transplantation in USA (Charlton et al., 2011). Moreover, the problem of hepatocytes being fatty, overcomes the liver itself, as it increases the risk for cardiovascular disease & death & duplicates the risk for type 2 diabetes mellitus (T2 DM), independently of the severity of liver injury (Musso et al., 2011).

Patients with T2 DM have a higher risk of development of non-alcoholic fatty liver disease (NAFLD) (*Leite et al.*, 2009) than those without T2 DM (*Hossain et al.*, 2009). The prevalence of NAFLD is increasing mostly likely due to the rise in obesity and diabetes (*Kojima et al.*, 2003). It is reported that 13.3% of deaths among diabetic patients are attributable to liver diseases, representing the increasing prevalence of