

Intelligent Techniques for Protein Secondary Structure Prediction

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By Hanan Yousry Wahba Hendy

Teaching Assistant at Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

Prof. Dr. Abdel-Badeeh Mohamed Salem

Professor in Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Prof. Dr. Mohamed Ismail Roushdy

Professor in Computer Science Department and Dean of Faculty of Computer and Information Sciences, Ain Shams University

Dr. Wael Hamdy Khalifa

Assistant Professor in Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University

Acknowledgment

First of all, I would to like to thank God for his endless blessings, for giving me the power and strength to complete this work and for giving me people who kept on supporting me.

Second, I would like to express my sincere gratitude to my supervisors; Prof. Dr. Abdel-Badeeh Salem for his support, patience and guidance, Prof. Dr. Mohamed Roushdy for his encouragement and Dr. Wael Khalifa for the special supervision experience he gave me. I am deeply thankful.

Third, I would like to thank my family for being available all the time and for the love they gave me through the years. Thank you for accepting me through the tough times and for always believing in me.

My dear friends who have helped me through the past time and kept on encouraging me to get this work done; Kholoud Abdul Salam, Manal Mostafa, Yasmine Afify and Ghada Hamed, without you it would have been much harder.

Last but not least, I would like to thank all my professors, colleagues and students who kept on encouraging me. Thank you for being in my life.

Hanan

Abstract

Protein is considered the building block of any living organism. Protein performs various functions in the human body, these functions differ from one to another according to the way the protein bonds together. The protein is initially composed of a sequence of amino acids which are named as the primary structure. Then the protein forms its secondary, tertiary and quaternary structures by forming hydrogen bonds.

The primary structure can be extracted from raw protein using simple scientific experiments. There have been various amino acid sequences discovered through the years. However, the secondary structure sequences cannot be extracted in the same manner. Moreover, the diseases and protein disorders can be detected when examining the secondary structure not the primary one. That is why it is crucial to find a way to get the secondary structure of a given primary sequence. Prediction is considered a solution to this problem. Given only the knowledge of primary sequence, it is required to predict the corresponding secondary one.

Various machine learning techniques have been used through the last decade to try to predict the protein secondary structure. The most commonly used paradigm was the Artificial Neural Networks. Variations of ANN have been used to increase the protein secondary structure prediction accuracy. Then few used case based reasoning and mixed integer optimization.

This thesis presents a study on the different techniques used for protein secondary structure prediction. The techniques are divided into three generations starting with statistical generation and ending with Machine learning one.

Then the thesis discusses five different approaches that are used for predicting the protein secondary structure in detail along with their computation parameters. These approaches are: Case based reasoning, Artificial Neural Networks, Decision Tables, Decision Trees and Bayes Networks. Two different datasets are used with different sequence lengths and with proper distribution among different amino acids. In Case Based Reasoning, eight different experiments are conducted resulting in prediction accuracy of 88%. In ANN, one thousand twenty-four experiments are conducted using different computation parameters resulting in accuracy of 68%, 81% and 86% for predicting alpha, beta and alpha and beta together respectively.

Then for the statistical techniques, ZeroR is used to determine the baseline accuracy for the other three. Eight experiments are conducted for each of the Decision Tree, Decision Table and Bayes Network. The accuracies reach 70%, 71% and 75% respectively. Moreover, two ANN hybrid techniques are proposed to increase the prediction accuracy. The first predicts alpha and beta each alone using the same ANN and merges the result. The accuracy increased by 1-2%. The second, picks the best two ANNs and uses both for prediction and then merges the results. This increased the accuracy by about 2-3%. Finally, this thesis compares all the experiments and concludes the best among them. The discussed experiments reached a prediction accuracy of 88% for maximum and 75% on average.

List of Publications

- 1- Hanan Hendy, Wael Khalifa, Mohamed Roushdy and Abdel Badeeh Salem. "A study of intelligent techniques for protein secondary structure prediction." *Information Models and Analyses Journal*, vol.4, no. 1, pp 3-12, 2015.
- 2- Hanan Hendy, Wael Khalifa, Mohamed Roushdy and Abdel Badeeh Salem. "The usage of Neural Networks Paradigm in the prediction of protein secondary structure." *Proceedings of the International Conference on Communications and Computers Recent Advances in Electrical Engineering*, pp 14-17, October 2015.
- 3- Hanan Hendy, Wael Khalifa, Mohamed Roushdy and Abdel-Badeeh M. Salem. "The Usage of Machine Learning Paradigms on Protein Secondary Structure Prediction". *International Journal of Circuits and Electronics*, vol.1, no.1, pp 72-77, 2016.
- 4- Hanan Hendy, Wael Khalifa, Mohamed Roushdy and Abdel-Badeeh M. Salem. "The effect of using different Neural Networks architectures on the protein secondary structure prediction". *Egyptian Computer Science Journal*, vol.40, no. 3, pp 58-71, September 2016.

Submitted:

5- Hanan Hendy, Wael Khalifa, Mohamed Roushdy and Abdel-Badeeh M. Salem. "Protein Eight Secondary Structure Classes Prediction Using Artificial Neural Networks". *International Journal of Genomics, Proteomics, Metabolomics & Bioinformatics (IJGPMB), USA.* 2016

Table of Contents

Acknowledg	gment	II
Abstract	- 	III
List of Publ	ications	V
Table of Co	ntents	VI
List of Figur	res	VIII
_	es	
List of Abbi	eviations	XIV
Chapter 1.	Introduction	2
1.1	Overview	2
1.2	Motivation	4
1.3	Objectives	5
1.4	Methodology	5
1.5	Contributions	
1.6	Thesis Organization	7
Chapter 2.	Biological Background	10
2.1	Protein Different Structures	
	2.1.1 Primary Structure	12
	2.1.2 Secondary Structure	
	2.1.3 Tertiary Structure	
	2.1.4 Quaternary Structure	
2.2	Protein Available Software	
Chapter 3.	Protein Secondary Structure Prediction Statistical and	
Intelligent T	Sechniques	21
3.1	Secondary Structure Prediction Generations	
	3.1.1 Statistical Generation	
	3.1.2 Enhanced Statistical Generation	25
	3.1.3 Machine Learning Generation	25
	3.1.3.1 Artificial Neural Networks	
	3.1.3.2 Case Based Reasoning	29
	3.1.3.3 Mixed Integer Linear Optimization	
	3.1.3.4 Swarm Intelligence	
	3.1.3.5 Hybrid Techniques	
Chapter 4.	Protein Data Preprocessing	
4.1	Datasets	
4.2	Data Preprocessing Stages	
	4.2.1 Raw Files Handling	
	4.2.2 Encode Data	
	4.2.3 Split Data	

	4.2.4 Format Data	49
Chapter 5.	Case Based Reasoning Usage in Protein Secondary Structu	re
Prediction		
5.1	CBR Tool	
5.2	Implementation	59
5.3	Results and Discussion	
Chapter 6.	Artificial Neural Networks Usage in Protein Secondary	
_	rediction	64
6.1	Artificial Neural Network Tool	67
6.2	Implementation	71
6.3	Results and Discussion	
	6.3.1 Experiment 1: Single ANN to Predict Three Main	
	Secondary Structure Classes	73
	6.3.2 Experiment 2: Hybrid ANN to Predict Three Main	
	Secondary Structure Classes	87
	6.3.3 Experiment 3: Single ANN to Predict Eight Secondary	ary
	Structure Classes	88
Chapter 7.	Statistical Techniques Usage in Protein Secondary Structur	e
Prediction		
7.1	Implementation and Results	
	7.1.1 ZeroR	
	7.1.2 Bayes Network	101
	7.1.3 Decision Table	
	7.1.4 Decision Tree	106
Chapter 8.		
Appendix A	a: MATLAB ANN Toolbox Walkthrough	
	3: ANN Additional Experiment	
References.	-	

List of Figures

Figure 1-1 Basic example for protein different structures	3
Figure 1-2 Real examples for protein different structures	4
Figure 2-1 Twenty common amino acids	0
Figure 2-2 Venn diagram of boundaries that symbolizes the universal set of	
20 common amino acids	1
Figure 2-3 Four levels of protein structures	2
Figure 3-1 Feedforward neural network model	б
Figure 4-1 Distribution of all primary structures in the used datasets 42	2
Figure 4-2 Distribution of combined primary structures in the used datasets	
	2
Figure 4-3 Distribution of all secondary structures in the used datasets 43	3
Figure 4-4 Distribution of combined secondary structures in the used	
datasets	3
Figure 4-5 Data preprocessing stages	5
Figure 4-6 Dataset raw files samples	6
Figure 4-7 Data preprocessing stages example	0
Figure 4-8 Matrix file example	1
Figure 4-9 CSV file example	1
Figure 4-10 Data preprocessing stages example	2
Figure 5-1 CBR R-4 Cycle	5
Figure 5-2 myCBR workbench	8
Figure 5-3 CBR pseudocode	0
Figure 6-1 Biological vs Artificial neuron	4
Figure 6-2 Multilayer ANN	5
Figure 6-3 Sigmoid function 66	б

Figure 6-4 Master ANN script	68
Figure 6-5 Batch ANN script	69
Figure 6-6 Generic ANN script	70
Figure 6-7 Feedforward ANN prediction accuracy using numeric encodi	ng
and predicting alpha only	74
Figure 6-8 Feedforward ANN prediction accuracy using binary encoding	g
and predicting alpha only	75
Figure 6-9 Feedforward ANN prediction accuracy using numeric encodi	ng
and predicting beta only	76
Figure 6-10 Feedforward ANN prediction accuracy using binary encoding	ng
and predicting beta only	77
Figure 6-11 Feedforward ANN prediction accuracy using numeric encode	ling
and predicting alpha, beta and coil	78
Figure 6-12 Feedforward ANN prediction accuracy using binary encoding	ng
and predicting alpha, beta and coil	79
Figure 6-13 Feedforward ANN prediction accuracy variation between	
numeric and binary encoding using 75% training and no	
ambiguous amino acids	82
Figure 6-14 Feedforward ANN prediction accuracy variation between	
numeric and binary encoding using 80% training and no	
ambiguous amino acids	83
Figure 6-15 Feedforward ANN prediction accuracy variation among	
numeric and binary encoding using 70% training with	
ambiguous amino acids	84
Figure 6-16 Feedforward ANN prediction accuracy variation among	
numeric and binary encoding using 80% training with	
ambiguous amino acids	85

Figure 6-17 Combines ANN used in prediction	87
Figure 6-18 ANN compared prediction accuracies when predicting	8 classes
without post processing	90
Figure 6-19 ANN compared prediction accuracies when predicting	8 classes
with post processing	91
Figure 7-1 Weka explorer	95
Figure 7-2 Weka experiment sample	96
Figure 7-3 Wrong learning process methodology	97
Figure 7-4 Learning cyclic process	97
Figure 7-5 ZeroR pseudocode	99
Figure 7-6 Decision table structure	104
Figure 7-7 Greedy decision tree pseudocode	107
Figure A- 1 Import input matrix to ANN	115
Figure A- 2 Import output matrix to ANN	116
Figure A- 3 Divide samples to training, validation and testing	116
Figure A- 4 Choose architecture	117
Figure A- 5 Training process	118
Figure A- 6 Ready network model diagram	118
Figure A- 7 The model after training	119

List of Tables

Table 2-1 Amino acids 1 and 3 letter codes
Table 2-2 Ambiguous amino acids
Table 2-3 Secondary structures classes
Table 2-4 Protein structures available software
Table 3-1 Three protein secondary structure prediction generations 23
Table 3-2 Comparison of main secondary structure prediction techniques . 32
Table 4-1 Protein databanks and datasets
Table 4-2 Datasets amino acid length distribution
Table 4-3 Occurrences of amino acids in the used datasets
Table 4-4 Occurrences of secondary structures in the used datasets
Table 4-5 Primary sequence encoding
Table 4-6 Secondary sequence encoding
Table 5-1 CBR prediction accuracy
Table 6-1 Feedforward ANN prediction accuracy using numeric encoding
and predicting alpha only74
Table 6-2 Feedforward ANN prediction accuracy using binary encoding and
predicting alpha only75
Table 6-3 Feedforward ANN prediction accuracy using numeric encoding
and predicting beta only76
Table 6-4 Feedforward ANN prediction accuracy using binary encoding and
predicting beta only77
Table 6-5 Feedforward ANN prediction accuracy using numeric encoding
and predicting alpha, beta and coil78
Table 6-6 Feedforward ANN prediction accuracy using binary encoding and
predicting alpha, beta and coil79

Table 6-7 Feedforward ANN prediction accuracy (no ambiguous amino
acids) 75% training
Table 6-8 Feedforward ANN results using feedforward (no ambiguous
amino acids) 80% training
Table 6-9 Feedforward ANN prediction accuracy using feedforward (with
ambiguous amino acids) 75% training
Table 6-10 Feedforward ANN prediction accuracy using feedforward (with
ambiguous amino acids) 80% training
Table 6-11 Hybrid ANN prediction accuracy
Table 6-12 ANN prediction accuracy when predicting 8 secondary structure
classes
Table 7-1 ZeroR prediction accuracy
Table 7-2 Bayes network prediction accuracy
Table 7-3 Decision table prediction accuracy
Table 7-4 Decision tree prediction accuracy
Table B- 1 Patternet ANN results using numeric encoding and predicting
alpha only121
Table B- 2 Patternet ANN results using binary encoding and predicting
alpha only122
Table B- 3 Patternet ANN results using numeric encoding and predicting
beta only122
Table B- 4 Patternet ANN results using binary encoding and predicting beta
only123
Table B- 5 Patternet ANN results using numeric encoding and predicting
alpha, beta and coil
Table B- 6 Patternet ANN results using binary encoding and predicting
alpha, beta and coil124

Table B- 7 Patternet ANN results (no ambiguous amino acids) 75% training	g
	24
Table B- 8 Patternet ANN results (no ambiguous amino acids) 80% training	g
	25
Table B- 9 Patternet ANN results (with ambiguous amino acids) 70%	
training12	26
Table B- 10 Patternet ANN results (with ambiguous amino acids) 80%	
training12	27

List of Abbreviations

Abbreviation Stands for

ABC : Artificial **B**ee **C**olony

ANN : Artificial Neural Networks

BMRB : Biological Magnetic Resonance Data Bank

CATH : Class, Architecture, Topology, Homologous

superfamily database

CB513 : Cuff and Barton data set

CBR : Case Based Reasoning

CSV : Comma Separated Values (File Format)

DAG : **D**irected **A**cyclic **G**raphs

DNA : **D**eoxyribo**N**ucleic **A**cid

DSC : **D**iscrimination of protein **S**econdary

structure Class

DSSP : Database of Secondary Structure assignments for

entries in the Protein Data Bank

EMBOSS : The European Molecular Biology Open Software

Suite

EVA : **EV**aluation of **A**utomatic protein structure prediction

FSSP : Families of Structurally Similar Proteins

GOR : Garnier-Osguthorpe-Robson method

GUI : Graphical User Interface

HSSP : Homology-derived Structures of Proteins

IDE : Integrated Development Environment

ML: Machine Learning

NMR : Nuclear Magnetic Resonance

PDB : Protein Data Bank

PDBe : Protein Data Bank Europe

PDBj : Protein Data Bank Japan

PHD : **P**rofile network from **H**ei**D**elberg

RCSB : Research Collaboratory for Structural Bioinformatics

RNA : **R**ibo**n**ucleic **A**cid sequence

SDK : Software Development Kit

SVM : Support Vector Machine

WEKA : Waikato Environment for Knowledge Analysis

WS : Window Size

wwPDB : Worldwide Protein Data Bank

ZeroR : Zeros of a Real polynomial