

شبكة المعلومات الجامعية







شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

### جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

#### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%



# بعض الوثائـــق الإصليــة تالفــة



# بالرسالة صفحات لم ترد بالإصل

## MATURITY INDICES OF RENAL FUNCTIONS IN NEONATES

RIESIST

Submitted for Partial fulfillment of Requirement of Master Degree.

Ton.

**Pediatrics** 

By

Youssef Fouad Fathalla Youssef

(M. B., Ch. B)

Supervisors



**Prof. Dr.**Mohamed Amr Hamam

Prof. of Pediatric Department
Faculty of Medicine
Tanta University

**Prof. Dr.**Nagy Mohamed Abu-El-Hana

**Prof. Dr.**Mohamed Kamai Zahra

Assist. Prof. of Pediatrics Faculty of Medicine Tanta University Assist. Prof. Of Clinical Pathology Faculty of Medicine Tanta University

FACULTY OF MEDICINE TANTA UNIVERSITY

2000



#### **ACKNOWLEDGEMENT**

First of all and above all, great thanks to ALLAH whose blessings on me can not be counted.

The sincerest thanks, deepest appreciation and greatest admiration to my Prof. Dr. Mohamed Amr Hamam Professor of Pediatric Department, Faculty of Medicine Tanta University, for his constructive keen supervision, fruitful criticism, continuous support and encouragement to complete this work. He continuously adviced me and spared no time or effort to offer his help and skill that made the completion of this work possible. I owe special feelings of gratitude and thanks to him.

It is difficult for me to express my deep appreciation and my great thanks to Prof. Dr. Nagy Mohamed Abu-El-Hana Assist. Prof. of Pediatric Department, Faculty of Medicine Tanta University, for his unlimited help, cotinuous encoragement, keen supervision and advice to overcome all the obstacles and to make the accomplishment of this work possible. He continuously adviced me and spared no time or effort to offer his help and skill that made the completion of this work possible.

I am specially grateful and specially indebted to Prof. Dr.

Mohamed Kamal Zahra Assist. Prof. of Clinical Pathology Faculty of Medicine, Tanta University, for his sincere and experienced guidance, kindness, continuous supervision and creative suggestion.

Finally I would like to thank all members of Pediatric Department, for their help and cooperation.

#### **ABBREVIATION**

**ARF:** Acute renal failure.

B-2.M: B-2 microglobulin.

**Bp:** Blood pressure

**C.N.S:** Central nervous system.

**FENA:** Fractional excretion of sodium.

FT: Full term.

GA: Gestational age

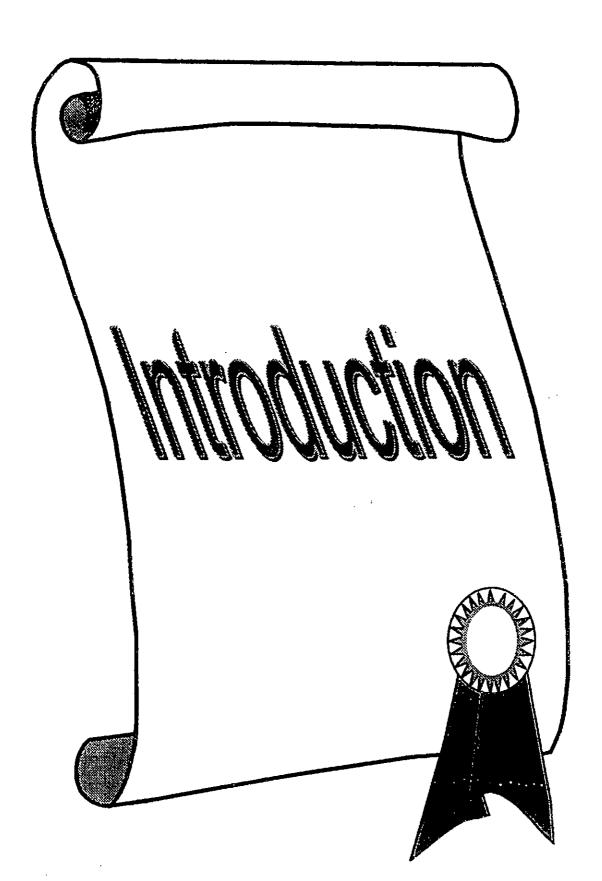
**GFR:** Glomerular filtration rate.

HIE: Hypoxic ischaemic encephalopathy.

**K**: Potassium.

M<sup>2</sup>: Square meter.

Na: Sodium.


PT: Preterm

**S.Cr:** Serum Creatinine.

TNa: Tubular reabsorption of sodium.



| INTRODUCTION                                       | 1  |
|----------------------------------------------------|----|
| REVIEW OF THE LITERATURE                           | 2  |
| O Renal anatomy                                    | 2  |
| O Development of renal function in preterm infants | 9  |
| Laboratory evaluation of renal function            | 16 |
| in the newborn infant                              |    |
| AIM OF THE WORK                                    | 22 |
| SUBJECTS & METHODS                                 | 23 |
| RESULTS                                            | 28 |
| DISCUSSION                                         | 60 |
| SUMMARY AND CONCLUSION                             | 71 |
| REFERENCES                                         | 76 |
| ADADIC CITATADV                                    |    |



#### INTRODUCTION

The kidney replaces the placenta as the major homeostatic organ, at birth maintaining fluids and electrolyte balance and removing harmful waste products. This transition occurs with changes in renal blood flow, glomerular filtration rate and tubular functions (Bailie, 1992).

The newborn kidney has a limited ability both to dilute and concentrate urine, has decreased glomerular filtration rate, blood flow and tubular reabsorption of glucose, sodium, Bicarbonate and has an inability to excrete an acid and phosphate load (Engl, 1986).

Assessment of renal maturation and early detection of renal dysfunction are important in clinical care of neonates (Peterson, Evrin and Berggard 1969).

Measurements of high and low-molecular- weight proteins in urine provide valuable information concerning glomerular and tubular functions (Kim and Emma 1998).

# Review Of Literature

#### REVIEW OF LITERATURE

#### RENAL ANATOMY

The kidneys are paired organs that lie retroperitoneally against the posterior wall of the abdominal cavity. Each kidney is enclosed in a thin, fibrous capsule, which can be stripped from the surface of the the normal kidney without difficulty. The kidneys are surrounded by the perirenal fat and lie in pockets formed by the fascial layers of the posterior abdominal wall (Patriciacollins, 1995).

The kidneys of newborn infants are relatively large and can usually be palpated easily through the muscle layers of the anterior abdominal wall. The surface show fetal lobulation, which is of no clinical significance and disappears after infancy.

Transverse section of the kindy shows are an outer cortex and an inner medulla (Fig. 1). The medulla is composed of wedge shaped pyramids, separated by medial extensions of cartical tissue, the renal columns of Bertin. The tips of the pyramids form the renal papillae, there are Twelve to eighteen papillae in each kidney, each of which opens into a cup shaped minor calyx (Hanslias Johne Pauly, 1991).

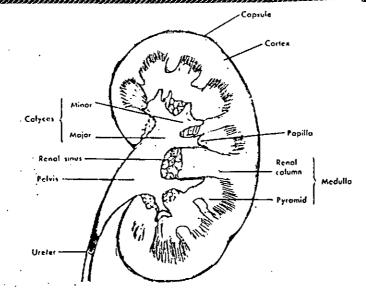



Fig. (1): Transverse section of the kidney

The majors and minor calyces, the renal peluis, the ureters and the urinary bladder together comprise the urinary collecting system.

There are three embryonic renal structures: The pronephros, mesonephros and the metranephros. There are all derived from the nephrogenic cord. Development proceeds in a craniocaudal direction (Potter and Osathanondh 1966).

#### Pronephros:

The human pronephros is a cervical kidney. It differentiates at the end of the third week and disappears at the end of the fourth week. It does not function. The solid nephrotoms transform into vesicles that do not form tubules and which degenerate without forming true nephrons or opening into the collecting duct. At the end of the vesicle a diverticulum develops which evolves into the wolffian duct. The pronephros disappears and only the wolffian duct persists (Patriciacollins, 1995).