

REUSING CONSTRUCTION MATERIALS IN CONSTRUCTION PHASE WITH SPECIAL REFERENCE TO RESIDENTIAL BUILDINGS

By

Nevine Samy Ahmed Abdien

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In Architecture Engineering

Environmental Design and Energy Efficiency in Buildings

REUSING CONSTRUCTION MATERIALS IN CONSTRUCTION PHASE WITH SPECIAL REFERENCE TO RESIDENTIAL BUILDINGS

By Nevin Samy Ahmed Abdien

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In Architecture Engineering
Environmental Design and Energy Efficiency in Buildings

Under the Supervision of

Prof. Dr. Ahmed Reda Abdin	Prof. Dr. Ihab Farouk Rached
Professor of Environmental Studies Architecture Department	Associate Professor Architecture Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Some University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

REUSING CONSTRUCTION MATERIALS IN CONSTRUCTION PHASE WITH SPECIAL REFERENCE TO RESIDENTIAL BUILDINGS

By Nevin Samy Ahmed Abdien

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In Architecture Engineering
Environmental Design and Energy Efficiency in Buildings

Examining Committee
Prof. Dr. Ahmed Reda Abdin, Thesis Main Advisor
Prof. Dr. Ihab Farouk Rached, Thesis Advisor
Prof. Dr. Sherif Mohamed Sabry El Attar, External Examine
Prof. Dr. Emad Aly EL Din El Sherbiny, Internal Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014 **Engineer's Name:** Nevin Samy Ahmed Abdien **Date of Birth:** ...01./...1984.....

Nationality: Egyptian

E-mail: nivineabden@outlook.com
Phone: 02-26700533-01124680391
Address: 31Taha El Denary st-Block 7-

Nasr City-Cairo, Egypt.

Registration Date: ...1./...10./ 2009 **Awarding Date:**/.../2014. **Degree:** Master of Science

Department: Architecture engineering

Supervisors:

Prof. Dr. Ahmed Reda Abdin

Prof. Dr. Ihab Farouk Rachid Professor of Architecture

EL Shorouk Academy

Examiners: Prof. Dr. Ahmed Reda Abdin, (Thesis Main Advisor)

Prof. Dr. Ihab Farouk Rached, (Thesis Advisor) Professor of Architecture EL Shorouk Academy

Prof.DR.Sherif Mohamed El Attar, (External examiner)

Professor of Architecture Fayom University. Prof.DR. Emad El Sherbiny (Internal examiner)

Title of Thesis:

Reusing Construction Materials in Post Building Phase with special reference to Residential Buildings.

Kev Words:

Waste Materials, Building Waste, Recycling Potential, Recycling, LCA, Management, Reusing, LCC.

Summary:

There has been a trend to preserve the environment through the concept of sustainable development, which means no depletion of the natural resources base of the biosphere, Consequently, the construction industry has a special obligation to behave proactively and shift rapidly from wasteful, harmful practices to a paradigm under which construction and nature work synergistically, rather than antagonistically. Search displays the types of Construction waste. The research deals with the need to take into account the economic feasibility of recycling and controls waste disposal, and displays search for some ways to take advantage of construction waste.

	Pag
Table of contents	I
List of figures	V]
List of tables	X
Acknowledgement	XI
Abbreviations	XI
Abstract	XV
1. Chapter One: Literature Review	
1.1 Introduction	2
1.2 Statement of the problem	2
1.3 Evaluation and Benefits	3
1.4 Benefits	3
1.4.1 Environmental Benefits	4
1.4.2 Community Benefits.	4
1.4.3 Economic Benefits.	4
1.5 Aim	4
	5
1.6 Limitations 1.7 Research hypothesis	5
* •	
1.8 Research methodology:	6
1.8.1 Analytical methodology.	6
1.8.2 Inductive methodology	6
1.9 Thesis layout	6
1.10 Research structure	8
2. Chapter Two: life cycle of building materials	1.0
2.1 Introduction	10
2.2 Construction waste	1.
2.3 Rating systems	12
2.3.1 Eco Homes [Eco Homes, 2003]	12
2.3.2 LEED Rating System [The U.S. Green Building Council, LEED, 2002]	13
2.3.3 Oakland Sustainable Design Guide [Regents of the University of Minnesota, 2001]	13
2.3.4 Minnesota Sustainable Design Guide [Regents of the University of Minnesota, 2001]	1.
2.3.5 Built Green [Washington State and Home Builders Association of Metro Denver, 2003]	1
2.3.6 Built Green Colorado [Home Builders Association of Metro Denver, 2004]	1
2.3.7 NABERS [The Department of the Environment and Heritage, 2004]	14
2.3.8 HK-BEAM [HK-BEAM society, 2004]	1
2.4 Recycling and Recycling potential	1:
2.4.1 The recycling hierarchy	1:
2.5 Life Cycle Design	10
2.6 Three Phases of Building Materials	1'
2.6.1 Pre-Building Phase.	18
2.6.2 Building Phase	13
2.6.3 Post-Building Phase	19
2.7 Resources &Energy	19
2.7.1 Usable and less usable resources.	20
2.8 Material resources	· ',

2.8.1Actions for resource conservation in the production of materials	21
2.8.2 Greater attention to unused resources and waste products	21
2.8.3 Substitution with less limited types of resources	21
2.8.4 Substitution with renewable resources.	21
2.8.5 Increased recycling of waste products during production	22
2.9 Energy resources	22
2.9.1 Stages of energy consumption in building materials	25
2.10 Embodied Energy of building materials	23
2.11 Energy consumption for erection, maintenance and demolition of the building	25
2.11.1 Energy consumption for the transport.	25
2.11.2 Energy consumption on the building site.	25
2.11.3 Energy consumption for maintenance and upgrading	26
2.11.4 Energy consumption of dismantling or removal of materials	26
2.12 Energy analysis over a building's life cycle.	26
2.12.1 Phases of Building's life cycle.	26
2.12.1.1 Manufacturing phase.	26
2.12.1.2 Construction and use phase	26
2.12.1.3 Demolition phase.	26
2.12.1.4 Renovation.	27
2.12.1.5 Destruction (disposal).	27
2.12.1.6 Recycling.	27
2.13 Life cycle assessment (LCA)	28
2.13.1 Lifecycle approach.	29
2.13.2 Lifecycle of building materials	30
2.13.2 Effective of building materials 2.13.2.1 Scenario 1	32
2.13.2.2 Scenario 2	33
2.13.2.3 Scenario 3	34
2.13.3 Conclusion of the scenarios	35
2.14 Life cycle cost (LCC)	35
2.14.1The use of life cycle costing in evaluating waste chains.	35
2.14.2 Life-cycle cost method for new construction materials	36
2.15 Pollution (Material pollution)	37
2.15.1 Climate emissions from the building sector	40
2.15.2 Carbon processes in building materials.	40
2.16 Other pollutants	41
2.16.1 Environmental poisons.	41
2.16.2 Substances that reduce the ozone layer.	42
2.17 Reduction of pollution.	43
2.17 Reduction of pollution in construction, use and demolition.	43
2.17 Reduction of poliution in construction, use and demonstron.	43
3. Chapter Three: Key Building Materials and Sources	73
3.1 Introduction	46
3.2 Metals in building materials	47
3.2.1 Iron and steel	47
3.2.1.1 Steel recycling.	48
3.2.1.2 Design for disassembly	49
3.2.1.3 Reuse of steel.	49
	r/

3.2.1.4 Examples	
3.2.2. Aluminum.	
3.2.2.1 Recycled Aluminum	52
3.3 Non-metallic mineral basic materials in buildings	. 52
3.3.1 Cements and limes	
3.3.2 Glass	
3.3.2.1 Production of glass for windows.	
3.4 Materials extracted from Soil	
3.4.1 The use of sand, gravel and stones for building.	
3.4.2 Earth as a building material	
3.4.3 Brick and other fired clay products	
3.4.3.1 Brick manufacture	
3.4.3.2 Recycling process.	
3.5 Plastics in buildings	61
3.5.1 Durability of plastic products.	
3.5.2 Recycling	62
3.6 Structural materials	63
3.6.1 Metal structures	. 64
3.6.2 Concrete structures	65
3.6.2.1The composition of concrete	66
3.6.2.2 The durability of concrete products	67
3.6.2.3 Recycling	
3.6.2.4 Examples	
3.7 Insulation materials	
3.7.1Cellulose Insulation.	
3.7.1.1 Embodied energy of cellulose	
3.7.2 Hemp fiber insulation	
3.7.3 Recycled denim jeans insulation.	
3.7.4 Bio-based spray foam insulation	74
3.8 Summary	76
3.9 Conclusion	78
4. Chapter Four : Criteria of recycling construction material in Egypt	
4.1 Introduction	80
4.2 Construction and demolition waste (C&D) in Egypt	
4.3 Geographical, historical and economical concerns.	
4.3.1 What should be taken in consideration	
4.3.2 The environment.	
4.4 Recycling process in Egypt and how it can be solved	82
4.5 Provisions in the Egyptian environmental law	
4.6 Waste Management in Egypt (general view)	83 84
4.6.1 Method to organize and manage the reuse of industrial materials in construction in	84
Egypt	84
4.6.1.2 Complementarily of roles of parties involved in the process of reuse to remove the	
causes that hinder the management of such material in Egypt	
4.6.1.3 Participation of the parties to the proposed project to achieve sustainable	 89
development fields at the actual application of the project	

4.7 C&D Composition plan sheet.	89
4.8 Methodology of sustainable construction in Egypt	91
4.8.1 Relation between Green Architecture and Sustainable Building	91
4.9 Sustainable Construction	93
4.10 Choosing sustainable materials	93
4.10.1 By-product	94
4.10.1.1Industrial materials	94
4.10.2 Examples of practical recycling applications	95
4.11 Advantages and disadvantages of the process of recycling waste	96
4.12 Features of Sustainable Building Materials.	97
4.12.1 Pollution Prevention Measures in Manufacturing	97
4.12.2 Waste Reduction Measures in Manufacturing	98
4.12.3 Recycled Content	99
4.12.4 Use of Natural Materials	99
4.12.5 Reduction of Construction Waste	99
4.12.6 Local Materials	99
4.12.7 Energy Efficiency	100
4.12.8 Water Treatment/Conservation.	100
4.12.9 Use of Non-Toxic or Less-Toxic Materials.	101
4.12.10 Renewable Energy Systems	101
4.12.11 Longer Life.	102
4.12.12 Reusability	102
4.12.13 Recyclability	103
4.12.13 Recyclability 4.12.14Biodegradability	
· · · · · · · · · · · · · · · · · · ·	104
4.13 A survey Questionnaire	104
4.13.1 Analytical study of field survey.	105
4.13.2 Conclusion of the questionnaire.	107
4.14 Conclusion	107
4.15 Recommendations.	108
5. Chapter Five: New techniques of reusing and recycling matrials	110
5.1 Introduction	110
5.2 Using shoppers plastic bags as recycling material used in construction	110
5.2 .1 Experimental program	111
5.2.1.1 Material	111
5.2.1.2 Fabrication of blocks	111
5.2.1.3 Swelling of blocks.	111
5.2.1.4 Stress–strain behavior and elastic properties.	111
5.2.1.5 Viscous properties.	112
5.2.1.6 Strain recovery	114
5. 2.2 Application of CSW blocks	114
5.2.3 Arch design	115
5.2.3.1 Comparison of observed and theoretical deflections	116
5.2.4 Observation from the experimental new technique	117
5.3 Other techniques for reusing waste material in residential buildings	118
5.3.1 Silos	118
5.3.2 Tires	119
5 3 3 Wood Pallets	119

5.3.4 Cardboard	
5.3.5 Scrap Metal.	
5.3.6 Glass Panels & Windows	
5.3.7 Reclaimed Wood.	
5.3.8 Stone	
5.3.9 Conclusion	
6. Chapter Six: Analytical study on reusing and recycling of	
residential projects.	Constituction materials in
6.1 A New Cairo Residential Building – Cairo - Egypt	124
6.1.1 Field work	
6.1.2 Measuring brick properties	
6.1.3 Manufacturing cost saving	
6.1.4 Case study results	
6.2 Yin Yang House	
6.2.1 Project overview	
6.2.2 Project location	
6.2.3 Construction materials	
6.3 Wine Creek Road Home	
6.3.1 Project overview	
6.3.2 Project location	
6.3.3 Construction materials	
6.4 Comparison between the three residential case studies	
6.5 EPA's new building Regional Headquarters office (Kansas)	
6.5.1General view on the project.	
6.5.2 LEED'S CRITERIA	
6.5.3 Building material	
6.5.3.1Field work	
6.5.3.2 Subsurface materials.	137
6.5.3.3 Exterior finish materials	
6.5.3.4 Interior finishes materials – walls	138
6.5.3.5 Interior finishes materials – floors	
6.5.4 Comparison between materials incorporated in the new EPA Re	gion 7 Building with 141
the EPA's Comprehensive Procurement Guidelines	
6.6 The Lazarus Commercial building in downtown Columbus	
6.6.1Before Redevelopment	
6.6.2 Field work	
6.6.2.1 Reducing, Reusing, and Recycling Materials during Reno	
6.6.2.2 Using Recycled-Content Products and Materials in Constr	
6.6.3 Cost Savings and Environmental Benefits	
6.6.4 Environmental Awards and Recognition	
6.6.5 Description	
6.7 Conclusion	
6.8 Recommendations	
6.9 Guidelines	

List of Figures

Figure 1.1: Research hypothesis
Figure 2.1: Construction Management with Three Dimensions
Figure 2.2: Construction Management with Four Dimensions
Figure 2.3: Cumulative Percentages of Projects Generating Construction Waste in
Egypt. Source: M.Firdaus, university of technology Malaysia, Report2009
Figure 2.4: waste reduction hierarchy
Figure 2.5: Material flow and its interaction with 6RS.Source: Research Institute for
Sustainability Engineering, College of Engineering Lexington
Figure 2.6: Illustrating the life cycle of Building into two main methods (Sustainable,
recyclable construction method) and (Existing construction method)
Figure 2.7: Three phases of building material life cycle
Figure 2.8: The cycle of materials.
Figure 2.9: Table comparing embodied energy content of common building materials
from primary vs. secondary source [Values are from J. L. Sullivan and J.
Hu, "Life Cycle Energy Analysis for Automobiles," SAE Paper No.
951829, SAE Total Life Cycle Analysis Conference, Vienna, Austria;
October 16, 1995(Warrendale, Pa.: Society of Automotive Engineers)
Figure.2.10: Local industries create less need for transport.
Figure 2.11: Climate impacts of paving slabs made in concrete and in granite, for use in
Norway.
The production of granite slabs has much less impact than the production
of concrete slabs. But when importing granite from China the emissions of
carbon dioxide from transport will quickly offset this advantage. Today
China is the dominating producer of granite slabs for the European market
(Berge, 2005) [18]
Figure 2.12: Life cycle of a product and energy consumption in this cycle. Recycling a
product prevents energy consumption in both the manufacturing (for next
product) and destruction (for existing product) phases. In demolition phase
material disposal would be replaced with recycling, as shown in diagram.
Figure 2.13: illustrates the inputs and outputs of each step in the life cycle of materials.
Figure 2.14: The three main stages of a life-cycle assessment
Figure 2.15: A Framework for Life Cycle Assessment
Figure 2.16: Contribution of CO2 emissions associated with the manufacture of the
materials needed for the construction 1 m2 (gross floor area) [34]
Figure.2.17: Contribution of primary energy demand for the manufacture of the
materials needed in the construction of 1 m2 (gross floor area) [34]
Figure 2.18: Building before removing
Figure 2.19: Building after remove cladding.
Figure 2.20: Workers try to dissemble framing lumber
Figure 2.21: Workers try to disassemble framing lumber
Figure 2.22: Workers removing roof shingles.
Figure 2.23: recycling shingle debris to asphalt
Figure 2.24: shingle debris before being recycled
Figure 2.25: final step of pavement.
Figure 2.26: building before removing concrete barracks

List of Figure

Figure 2.27: building after removing concrete barracks	34
Figure 2.28: Concrete after being treated and recycled.	34
Figure 2.29: recycling concrete into aggregate road base	34
Figure 2.30: Measurment of the amount of raw materials consumed in the united states	35
Figure 2.31: Total discounted cost of owning, operating, maintaining, and disposing of	2.6
a building or a building breakdown	36
Figure 2.32: illustrates global warming (GWP), acidification (AP), eutrophication (NP)	
and photochemical oxidants (POCP) in the case with no recycling and the	
case with recycling. In the case with no recycling, the contribution is	
caused by energy use for producing a new product that is a substitute for	39
the old one. In the case with recycling, the contribution is caused by energy	
use for transporting the product that will be reused	
Figure 2.33: Projected surface temperature changes for the late 21st century (2090–	
2099). Temperatures are relative to the period 1980–1999 (IPCC, 2007)	40
[38]	70
Figure 2.34: Closed-loop material life cycle (Addis 2006).	43
Figure 3.1: The industry must build up its capabilities and skills in construction and	73
installation	46
Figure 3.2: Prefabricated components like glass facades and metal parapets are good	
	46
alternatives.	48
Figure 3.4: Collection of coren metal for recycling	48
Figure 3.4: Collection of scrap metal for recycling.	
Figure 3.5: Prefabricated steel sections do not generate any waste at the site	48
Figure 3.6: Part of the new structure for the Mountain Equipment Co-op store in Ottawa	50
was designed around steel structural components dismantled from a building	50
on the site.	
Figure 3.7: The University of Toronto Scarborough Campus Student Centre uses steel	50
from the demolition of the Royal Ontario Museum to help achieve the	50
students' green aims.	
Figure 3.8: 4-Legged stainless steel spider within a tension truss point supported glass	53
walls	
Figure 3.9: Closed-up view of 4-legged stainless steel spider.	53
Figure 3.10: Traditional earth buildings in Yemen. Source: Tyabji	56
Figure 3.11: Earth building at Ile d'Abeau in France. Photo: Alice Reite.	56
Figure 3.12: Life Cycle Diagram structural Clay Products [adapted from (Venta 1998)	57
[77]	
Figure 3.13: The industrial die with a mouthpiece.	58
Figure 3.14: Colour of bricks varies with composition of clay and firing temperature	58
Figure 3.15: Small-scale open charcoal kiln in India. Source: Pratheeps	59
Figure 3.16: Firing clay blocks that in themselves form the walls of the kiln. Source:	59
Khalili, 1983	
Figure 3.17: Tunnel kiln. Source: RHI	60
Figure 3.18: Early use of cast iron in a London railway station	64
Figure 3.19: Mortar free construction with concrete lightweight blocks. Source: Maxit.	65
Figure 3.20: Prefabricated concrete construction systems.	66
Figure 3.21: Standard concrete precast units for walls and floors	66

List of Figure

Figure 3.22: Mobile equipment for producing recycled aggregate
Figure 3.23: Norwegian re-usable foundation system in concrete units. All the
components are standardized and locked together internally with grooves
and bolts. During demolition, the ties and pillars are lifted up, leaving only
the bases of the pillars standing in the ground. The rest is quality-controlled
on site and then transported directly to a new building site. Gaia Lista,
1996
Figure 3.24: Wheel stopper 69
Figure 3.25: Road kerb.
Figure 3.26: Block drain.
Figure 3.27: Channel drain 69
Figure 3.28: CRD waste
Figure 3.29: Preliminary crushing and removal of ferrous metals
Figure 3.30: Removal of foreign materials such as bricks, plastics and asphalt
Figure 3.31: Further crushing and screening of recycled aggregates into various sizes.
Figure 3.32: Stockpile of recycled aggregates for usage
Figure 3.33: Various applications of recycled aggregates.
Figure 3.34: Blowing cellulose insulation into ceilings and walls
Figure 3.35: Cellulose, which is made from recycled newspapers, is dense-packed
between studs on this new construction home. It is blown in through the 71
holes.
Figure 3.36: Newspaper is turned into insulation by shredding it into small granules
until it is a fluffy consistency. This material can then be blown or sprayed 72
into the desired location to fill the spaces. Photo Source: Epa.gov
Figure 3.37: Blowing the loose-fill cellulose into the spaces.
Figure 3.38: Hemp fiber insulation Photo Source: Flickr.com
Figure 3.39: Recycled denim jeans. Photo Source: Concrete-blond.com
Figure 3.40: Spraying foaming into the desired cavities and then expanding. Photo
Source: Farm2.static.flickr.com
Figure 3.41: Trained professional using protective clothing
Figure 4.1: proportion percentage of solid waste in Egypt [43]
Figure 4.2: Circular and Linear flows of materials.
Figure 4.3: Reuse –recycle can occur onsite and offsite.
Figure 4.4. The waste management operation through the three phases involving
designers, contractors and users.
Figure 4.5: Overcome the reasons that hinder the rause industrial materials in building
in Egypt.
Figure 4.6: Increase the effectiveness of the parties involved in the process of reuse
industrial materials in building in various facets of development
(environmental, economic, social and physical) for sustainable
development.
Figure 4.7: Aspects of the Sustainability.
Figure 4.8: The Building spectrum.
Figure 4.9: Three Dimensions of sustainable development.
Figure 4.10: Key to the green features of sustainable building materials.
Figure 4.11: Types of Waste Materials in Construction Projects

List of Figure

Figure 4.12: Sources of Waste Materials in Construction Projects	105
Figure 4.13: Systems and Tools in Waste Management.	106
Figure 4.14: Attitudes and Intention for Future Application.	106
Figure 4.15: continuous development of guidelines.	108
Figure 5.1: Different forms of the CSW-blocks: (a) block with 6-straps, (b) block with 3-straps, (c) model of the loose shoppers in the press mold, (d) individual shoppers inside the block, (e) bundles of shoppers inside the block, f-model of the compressed shoppers deformed to crisscross sheet	112
Figure 5.2: fabrication pressure –density	112
Figure 5.3: Swelling–density.	112
Figure 5.4: (a) Load test arrangement for determination of elastic properties. (b)	112
Buckling of block due to load applied parallel to compressed shoppers sheets	113
Figure 5.5: Stress–strain curves for blocks of varying densities for determination of	114
modulus of elasticity.	114
Figure 5.6: Modulus of elasticity–density (design chart)	114
Figure 5.7: Stress–strain curves for varying loading intervals for block of 200 kg/m3 density.	115
Figure 5. 8: Modulus of elasticity–loading interval for block density of 200 kg/m3	115
Figure 5. 9: Load test arrangement for determination of viscous properties	115
Figure 5.10: Cantilever retaining wall	115
Figure 5.11: Inverted gravity retaining wall	115
Figure 5.12: Tie-back retaining wall.	116
Figure 5.13: Embankment on soft soil.	116
Figure 5.14: Slope stabilized using CSW blocks layer as geo-fabric	116
Figure 5.15: Pre-stressed gravity retaining wall.	116
Figure 5.16: Reinforced earth retaining wall.	116
Figure 5.17: Fill for access ramp.	116
Figure 5.18: Arch under self-load.	117
Figure 5.19: Arch subjected to self + imposed loads.	117
Figure 5.20: Comparison of observed and theoretical deflections	117
Figure 5.21: Reusing Silos to create unusual circular homes.	118
Figure 5.22: Examples of earth ships made of tires and other recycled materials	119
Figure 5.23: Global model earth ship, Designer, Michael.	119
Figure 5.24: Wood pallets are reused as shading component in buildings	119
Figure 5.25: Stutchbury and Pape cardboard house	120
Figure 5.26: Metal masterpiece northwest of Toronto	120
Figure 5.27: (A). Kolonihavehus by artist Tom Fruin. (B) Freetown Christiania, a	120
commune in Copenhagen, was built in the '60s using reclaimed windows. (C) Inexpensive modular home made from processed waste glass	120
Figure 5.28:(A) 'Tree house of Hyeres'.(B) reclaimed wood makes up the core structure	101
of the house.(C) house made of mixed new and used wood	121
Figure 5.29: (A) Ty Pren residence in South Wales. (B) John Pawson used reclaimed stone to create The House of Stone in Milan	121
Figure 6.1: Instrumentations used to prepare the different mixtures' samples.	125
Figure 6.1: To be viable in the industry, innovative brick must meet the same	125
THE THE VICE TO THE VIGINE HE HIS HIGHMAN V. HIHOVALIVE DITER HUSE HIGH THE SAINE	1 Z. I