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Abstract

Retrieving the emotional effect of images or texts is very important to be able to handle
the published content on the internet. It can be used for product selection, politics and
public opinion statistics.

In spite that a lot of efforts have been made to address textual and visual ordinary
classification problems, much less efforts have targeted multimedia sentiment analysis.
Traditional studies of sentiment analysis targeted either images or texts, yet, it is inadequate
in the era of social multimedia. It doesn’t only limit the scope of the targeted content, but
it also neglects the way our human brain works to combine different data. Multimedia
sentiment analysis is considered a challenging task due to its high level of classification,
in addition to the informalities from which the social media content suffers.

In this study, we address this problem on Twitter social multimedia content that
contains both textual and visual data. We present an end-to-end complete neural network
model to solve the problem of multimedia sentiment analysis. Firstly, we introduce a deep
Convolutional Neural Network (CNN) for visual sentiment analysis. We compare it to the
state-of-the-art model for sentiment analysis of Twitter’s images. Secondly, a modified
Recurrent Neural Network (RCNN) -which uses both convolutional and recurrent layers-
is proposed for textual sentiment analysis. It is compared to multiple variations to test the
effect of different architectures on the model. In these tests, we test two recurrent layers,
namely, Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) and we test
adding a convolutional layer before and after the recurrent layer.

To handle the mixed inputs of images and texts we test early-fusion and late-fusion
between the two proposed models and we also test the effect of fine-tuning.

To test the effect of different values for the parameters, we conduct a sensitivity test
for the proposed text model which shows the robustness of the proposed model. It also
shows that the chosen parameters are enough for the models’ capacity.

Finally, we analyze the proposed model using different test samples to show its points
of strength and limitations. In comparison to the state-of-the-art model, the proposed
model shows superior performance with absolute improvement of 5% and relative error
improvement of 25% on the same test set.
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Chapter 1: Introduction

Online social networks have gained a lot of importance in our daily life. Twitter, Facebook
and other social media channels have become the major sources of information, news and
opinions. Most users find it a secure way to express themselves freely. Over the time, it
became an expressive and unbiased way to extract opinions about different topics. It has a
wide variety of applications. For example:

1. Product Selection based on the reviews of customers: the reviews of customers are
used to estimate the acceptance or refusal of a product [[10].

2. Predicting the results of elections: which can be used by different parties to modify
their vision according to the opinions of the people [4]].

1.1 Motivation

Retrieving sentiment analysis for social media content is considered a difficult task because
it is a high level classification problem. In addition to that:

1. The same input -whether an image or a text- can have multiple meanings given
different environments and events.

2. Social media data suffers from informality.
3. Images may be very different in size and quality.
4. Texts may contain non-traditional English words and abbreviations.

Textual sentiment analysis alone has become inadequate due to the variety of forms that
social networks provide for users to express themselves. Accompanied with other forms
of media such as images, it’s more likely to be able to express and convey people’s subtle
feelings. For example, two extreme examples are illustrated to show the importance of
using both text and image data. In figures[I.Taland [I.Tb] text alone is useless, however,
it’s very easy to get the sentiment using the images. In contrast, in figures and [1.2b]
sentiment depends mainly on the text as it’s more illustrative.

Convolutional Neural Networks (CNNs) have dominated a lot of image classification
and recognition problems. They achieve state-of-the-art results in an increasing number
of computer vision tasks including: scene classification [8]], face recognition [1] and face
detection [28]].

Recurrent Neural Networks (RNNs) are appropriate for sequence problems, where
the output relies on some sequence(s) of inputs. Instead of dealing with fixed-size inputs
to get fixed-size outputs, they deal with variable size of sequences and relate it to one or
more outputs. That’s why RNNs have been used thoroughly in solving the problems of
sequences including text classification [25]], text completion [43]], question answering[16]
and speech recognition [[13]].



(a) “My feeling right now...” (b) “My feeling right now...”

Figure 1.1: Ambiguous text

(a) “Feeling lost :(” (b) “A great journey to the desert, loved it
<3’7

Figure 1.2: Ambiguous image



