THE USE OF METEOROLOGICAL DATA AND GEOGRAPHIC INFORMATION SYSTEMS (GIS) IN THE INTEGRATED MANAGEMENT OF SOIL AND WATER FOR SUSTAINABLE AGRICULTURE IN TOSHKA

Submitted By

Ahmed Ali Abd El-Fattah Meleha

B. Sc. of Agricultural Sciences, Faculty of Agriculture, Tanta University, 2002 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2012

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University

2018

APPROVAL SHEET THE USE OF METEOROLOGICAL DATA AND GEOGRAPHIC INFORMATION SYSTEMS (GIS) IN THE INTEGRATED MANAGEMENT OF SOIL AND WATER FOR SUSTAINABLE AGRICULTURE IN TOSHKA

Submitted By Ahmed Ali Abd El-Fattah Meleha

B. Sc. of Agricultural Sciences, Faculty of Agriculture, Tanta University, 2002 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2012

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Agricultural Sciences

This thesis Towards a Master Degree in Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Abd El-Salam Abbas Abd El-Salam

Prof. of Soil & Water Sciences, Department of Soil and Water Sciences Faculty of Agriculture Alexandria University

2-Prof. Dr. El-Sayed Mohamed Selem Gheith

Prof. of Crop Sciences, Department of Crop Sciences Faculty of Agriculture Cairo University

3-Prof. Dr. Ezzat Mohamed Soliman

Prof. of Soil and Water Sciences Department of Environmental Agricultural Sciences Institute of Environmental Studies Ain Shams University

4-Dr. Waleed Mohamed Fares

Senior Researcher of Central Laboratory for Design and Statistical Analysis Research Agricultural Research Center

2018

THE USE OF METEOROLOGICAL DATA AND GEOGRAPHIC INFORMATION SYSTEMS (GIS) IN THE INTEGRATED MANAGEMENT OF SOIL AND WATER FOR SUSTAINABLE AGRICULTURE IN TOSHKA

Submitted By

Ahmed Ali Abd El-Fattah Meleha

B. Sc. of Agricultural Sciences, Faculty of Agriculture, Tanta University, 2002 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2012

A thesis submitted in Partial Fulfillment

Of
The Requirement for the Master Degree
In

Environmental Sciences
Department of Environmental Agricultural Sciences

Under The Supervision of:

1-Prof. Dr. Prof. Dr. Ezzat Mohamed Soliman

Prof. of Soil and Water Sciences Department of Environmental Agricultural Sciences Institute of Environmental Studies Ain Shams University

2-Dr. Waleed Mohamed Fares

Senior Researcher of Central Laboratory for Design and Statistical Analysis Research Agricultural Research Center

2018

Acknowledgement

Acknowledgment

First I bow down and prostrate in adoration to ALLAH who guided and helped me to finish this work.

I would like to express my deepest appreciation to the main supervisor **Prof. Dr Ezzat M.Soliman**, Professor of Water and Soil Science, Dept. of Agricultural Science, Institute of Environmental Studies and Research., Ain Shams Univ., who spent most of his time and talent in suggesting the problem, continuous encouragement and helpful advice. He never deprived me of the great benefit of his experience in the preparation of the Manuscript of the thesis.

Many thanks and gratefulness are due to **Dr. Waleed M. Fares,** Researcher in Agricultural Research Center, for his personal concern in planning the program of this study and for his continuous help and support during all phases of the study in addition great effort in the analyzes of statistical data of the thesis.

Appreciations are also extended to staff members of the Department of Agricultural Science, Institute of Environmental Studies and Research, Ain Shams Univ.,

Finally, sincere thanks and appreciation also go out to all members of my family, father, mother, wife, sons and my friends for their help, patience, assistance and encouragement during this work.

Abstract

Abstract

Abstract

The present investigation was carried out at the experimental Farm, Water Studies and Research Complex (WSRC) Station, National Water Research Center, Toshka, Egypt during 2013/2014 and 2014/2015 seasons. Wheat crop was used in the current study to test the integrated management of water and agriculture as well as in an assessment of reference evapotranspiration (ET₀) within the meteorological data by using computer programs.

The transactions of different irrigation regimes (60, 80, 100 and 120%) was applied based on crop evapotranspiration (ETc) that was calculated by the amounts calculated daily (ETo), measured using penman-monteith method, where the irrigation process were carried out at 8 am.

Results showed the comparison between Misr 1 and Misr 2 wheat cultivars in both seasons under the different irrigation treatments was not significant for all studied characters while there were significant differences among irrigation regimes (60, 80,100 and 120%) (ETc) as well as in terms of Super Absorbent Polymers (SAP) (hydrogel treatment) compared to null treatment.

The heighest wheat crop productivity was obtained when used (120% ET_c treatment) coupled with adding Hydrogel as a (SAP), so this recommendation should be used if there is no problem in irrigation water because it increases productivity. However, the lowest wheat crop productivity was recorded by (60% ET_c treatment) without adding Hydrogel as a (SAP), so this method should be applied if there was a problem in irrigation to save water.

The reduction of irrigation water is one of the most important strategies now to face the water scarcity problem accordinary.It can Abstract

reduce the small proportion of production with reducing irrigation water ratio up to 20-40% from water requirements as ashowed in the experiment to could be a good decision toward saving more water to irrigate more land and achieve the difficult equation which close the gap between production and demand and water scarcity conditions.

Keywords: Meteorological data, Toshka, wheat and crop water requirements.

Contents

Contents

No	Subject	Page
	Acknoledgement	
1-	Introduction	1
2-	Review of Literature	3
2.1	Evapotranspiration methods.	3
2.2	Evapotranspiration or consumptive use Weather	4
2.3	parameters	6
2.4	Climate change.	7
2.5	Geographica Information Systems (GIS)	8
2.5.1	What are GIS?	8
2.6	Irrigation methods	9
2.6.1	Sprinkler irrigation Systems	10
2.6.2	Water requirement under sprinkler irrigation	13
2.6.3	Water requirement of wheat crop	13
2.6.4	Evapotranspiration for wheat crop	14
2.7	Actual consumptive water use	15
2.8	Crop coefficient (Kc)	17
2.9	Soil water relations.	18
2.9.1	Soil salinity	18
2.9.2	Soil texture and compaction.	19
2.9.3	Water table	19
2.9.4	Soil managements	20
2.10	Crop characteristics	20
2.11	Relationship between water regime and crops	21
2.11.1	Water relation for wheat.	21

2.11.2	Crop water requirements	23
2.12	Irrigation regimes.	26
2.13	Water use efficiency of wheat (WUE)	27
2.14	Crop coefficient (Kc)	28
2.15	Yield and yield components	31
2.15.1	Wheat	31
2.16	Potential evapotranspiration.	32
2.17	Factors affecting crop water requirements	32
2.18	Water Scarcity	33
2.19	Effect of water regimes on soil properties	35
2.20	Effect of water regimes on crop	35
2.21	Wheat yield and yield components parameters	38
2.22	Super Absorbent Polymers (SAP)	40
2.22.1	Polymers for water conservation in agricultural lands	40
2.22.2	Increasing irrigation efficiency by SAP	41
2.22.3	Sap treatment to reduce drought stress efficiency	42
2.22.4	Sap to enhance fertilizer efficiency	43
2.22.5	Application rate of the SAP	44
2.22.6	Super Absorbing Polymers (SAPs)	45
2.22.7	Chemical Structure of Super Absorbent Polymers	46
2.22.8	Uses of super absorbent polymers in agriculture	47
2.22.9	Limitations of super absorbent polymers in agriculture	48
3-	Materials and Methods	50

3.1	Experimental Study	51
3.2	Calculation of irrigation water requirement	53
3.2.1	Reference evapotranspiration (ET ₀)	53
3.2.2	FAO Penman-Monteith equation.	53
3.2.3	Crop evapotranspiration (ET _c)	54
3.2.4	Irrigation water use efficiency (IWUE)	54
3.3	Wheat experiments.	55
3.3.1	Experimental design	55
3.4	The agricultural treatments	59
3.4.1	Irrigation applied	59
3.4.2	Calculation of irrigation water requirement	60
3.5	Soil sampling	63
3.5.1	Soil physical properties.	63
3.5.2	Soil chemical properties	63
3.6	Geographic Information Systems (GIS)	65
3.6.1	Using GPS	65
3.6.2	Using google earth website	65
3.6.3	Image acquisition	65
3.7	Characters studied	65
3.7.1	Crop Parameters Measurements.	65
3.7.1.A	Growth stages.	65
3.7.1.A.1	Morphological characters	65
3.7.1.B	Yield and yield components parameters of wheat	65
3.8	Statistical Analysis	66
4	Results and discussion	68

4.1	Geographic Information Systems (GIS)	68
4.1.1	Using GPS	68
4.1.2	Using google earth website	68
4.1.3	Image acquisition	69
4.2	Grain yield and its components	75
4.2.4	Morphological characters	75
4.2.A.1	Days of heading.	75
4.2.A.2	Plant height (cm)	77
4.2.B	Yield and yield components	78
4.2.B.1	Spike length (cm)	78
4.2.B.2	No of spikes per square meter.	80
4.2.B.3	Number of grains per spike	81
4.2.B.4	Biological yield kg per m ²	83
4.2.B.5	Grain yield /fed. (Ardab)	84
4.2.B.6	1000 – Grain weight (gm)	85
4.2.B.7	Straw yield per fed (ton)	87
4.2.B.8	Harvest index (H I)	89
4.3	Irrigation water use efficiency (IWUE)	90
4.4	The General Recommendations	94
5	Summary	96
6	References.	103
7	Arabic summary	١
8	Arabic Abstract	٥

List of Tables

No	Title	Page
1	Reference evapotranspiration (ET_0) for wheat in some locations of Misr, as cited in the literature	15
2	Actual evapotranspiration ETa (m ³ /fed) for wheat in some locations of	10
	Misr, as cited in the literature	24
3	Actual water consumptive use for wheat in some locations in Misr, as	2.
	cited in the literature	26
4	Suggested application rates of SAP under different conditions	45
5	Hourly averages of maximum temperature (T max), minimum temperature	73
	(T min), relative humidity (Rh) and wind speed (Ws) during the average	
	winter agricultural seasons from 2008 to 2013 for 24 hours at Toshka	51
6	Reference evapotranspiration (ET ₀) within studied the meteorological data of Toshka weather station were used in the	01
7	calculated Total amount of irrigation water of wheat crop season 2013/14 in	59
	different irrigation regimes experiment calculated based upon Et ₀	61
8	Total amount of irrigation water of wheat crop season 2014/15in different	
	irrigation regimes experiment calculated based upon Et0	62
9-	Some analytical data of the studied soil and groundwater of the	
A	experimental site before cultivation. A. Physical properties of the studied	
	soil	64
9- D	Some analytical data of the studied soil and groundwater of the	
В	experimental site before cultivation. B- Chemical properties of the	
	studied soil	64
9-	Some analytical data of the studied soil and groundwater of the	
C	experimental site before cultivation. C- Chemical analysis of the ground	
	water (irrigation water)	64

10	Effect of different irrigation regimes and hydrogel on number of days to 50% heading in Misr 1 and Misr 2 cultivars during two seasons	76
11	Effect of different irrigation regimes and hydrogel on Plant height in Misr 1 and Misr 2 cultivars during two seasons	70
12	Effect of different irrigation regimes and hydrogel on Spike length (cm) in Misr 1 and Misr 2 cultivars during two seasons	79
13	Effect of different irrigation regimes and hydrogel on No of spikes / m ² in Misr 1 and Misr 2 cultivars during two seasons	80
14	Effect of different irrigation regimes and hydrogel on Number of grains / spike in Misr 1 and Misr 2 cultivars during two seasons	
15	Effect of different irrigation regimes and hydrogel on biological yield kg per m2 in Misr1 and Misr 2 cultivars during two seasons	82
16	Effect of different irrigation regimes and hydrogel on grain yield / fed (ardab) in Misr 1 and Misr 2 cultivars during two seasons	84
17	Effect of different irrigation regimes and hydrogel on 1000- grains weight in Misr 1 and Misr 2 cultivars during two seasons	80
18	Effect of different irrigation regimes and hydrogel on Straw yield per fed (ton) in Misr 1 and Misr 2 cultivars during two seasons	O.
19	Effect of different irrigation treatments and hydrogel on Harvest index	8
	(H. I) in Misr 1 and Misr 2 cultivars during two seasons	89
20	Yield and irrigation water use efficiency (IWUE) of sprinkler -irrigated wheat crop grown in irrigation regimes to both cultivars in 2013-14	9
21	Yield and irrigation water use efficiency (IWUE) of sprinkler -irrigated wheat crop grown in irrigation regimes to both cultivars in 2014-15 season.	9