

Al-Azhar University (Girls Branch) Faculty of Science Chemistry Department

Improvement of Physico-Chemical Properties of Recycled (Elastomers /Thermoplastics) Composites using Ionizing Radiation

A Thesis Submitted by

Mona Yusuf Elnaggar Ahmed Ibrahim

M Sc. In Chemistry 2010

National Center for Radiation Research and Technology

Atomic Energy Authority

 \mathcal{T}_0

Chemistry Department
Faculty of Science, Al-Azhar University (Girls Branch)

In Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry

(2013)

Al-Azhar University (Girls branch) Faculty of science Chemistry Department

Improvement of Physico-Chemical Properties of Recycled (Elastomers /Thermoplastics) Composites using Ionizing Radiation

A Thesis Submitted by

Mona Yusuf Elnaggar Ahmed Ibrahim

M. Sc. In Chemistry 2010

National Center for Radiation Research and Technology

Atomic Energy Authority

Faculty of Science, Al-Azhar University (Girls branch)

 T_0

Chemistry Department
Faculty of Science, Al-Azhar University (Girls Branch)

For The Fulfillment of the Ph. Degree in Science

(2013)

Thesis Supervisor

Prof. Dr. El-Sayed A. Hegazy

Prof. Dr. Nagwa A. Badawy

Prof. of Radiation Chemistry, former Prof. of Physical Chemistry, Faculty of chairman of National Center for Radiation Science (Girls), Al-Azhar University Research and Technology

Asst . Prof . Dr. Medhat M. Hassan

Asst. Prof. of Radiation Chemistry in National Center for Radiation Research & Technology

Approval Sheet

Name: Mona Yusuf Elnaggar Ahmed Ibrahim

Title of thesis:

Improvement of Physico-Chemical Properties of Recycled (Elastomers /Thermoplastics) Composites using Ionizing Radiation

Degree: Ph. Degree, Faculty of Science, Al-Azhar University (Girls Branch), 2013

Signature

Supervisors

Prof. Dr. El-Sayed A. Hegazy

Prof. of Radiation Chemistry, former chairman of National Center for Radiation Research and Technology

Prof. Dr. Nagwa A. Badawy

Prof. of Physical Chemistry, Faculty of Science (Girls), Al-Azhar University

Asst . Prof . Dr. Medhat M. Hassan

Asst. Prof. of Radiation Chemistry in National Center for Radiation Research and Technology

Head of Chemistry department
Faculty of Science, Al-Azhar University (Girls Branch)

Signature

Al-Azhar University (Girls branch)

Faculty of science
Chemistry Department

Approval sheet

Name: Mona Yusuf Elnaggar Ahmed Ibrahim

Title of thesis: Improvement of Physico-Chemical Properties of Recycled (Elastomers /Thermoplastics) Composites using Ionizing Radiation

Degree: Ph. Degree, Faculty of Science, Al-Azhar University (Girls Branch),

2013

Examiner Committee

Signature

Prof. Or. Heshan Fouad AlyProf. of Nuclear Chemistry, EAEA

Prof. Dr. Fatma Hafez Kmal

Prof. of Physical Chemistry, Faculty of Science (Girls), Al-Azhar University

Prof. Dr. El-Sayed A. Hegazy

Prof. of Radiation Chemistry, former chairman of National Center for Radiation Research and Technology

Prof. Dr. Nagwa A. Badawy

Prof. of Physical Chemistry, Faculty of Science (Girls), Al-Azhar University

Prof. Dr. Eman Shokry

Head of Chemistry Department

Faculty of Science, Al-Azhar University (Girls Branch)

Signature

Al-Azhar University (Girls Branch) Faculty of Science Chemistry Department

Improvement of Physico-Chemical Properties of Recycled (Elastomers /Thermoplastics) Composites using Ionizing Radiation

Plan of work

- 1. Attempts of partially devulcanizing the implemented rubber by various ways are intended to be carried out.
- 2. The materials to be used in this investigation are polymeric virgin and waste of thermoplastics such as PE, PP, PET, PA, in addition to waste rubber.
- 3. Preparation of blends and composites will be carried out by adding some additives using extruder and compression molding machine.
- 4. Compatiblizers will be used for stabilizing the developed blends and composite
- 5. EPDM addition to prepared blends and composites for enhancing the outcome properties.
- 6. Vulcanizing agents will be tried on the partial waste rubber devulcanizate for acquiring better mechanical characters.
- 7. Different samples of blend and composite will be exposed to different doses of gamma radiation or electron beam radiation.
- 8. Characterization of materials will be done by different techniques like IR and XRD, etc.

Supervisors Signature

Prof. Dr. El-Sayed A. Hegazy

Prof. of Radiation Chemistry, former chairman of National

Center for Radiation Research and Technology

Prof. Dr. Nagwa A. Badawy

Prof. of Physical Chemistry, Faculty of Science (Girls), Al-Azhar University

Asst . Prof . Dr. Medhat M. Hassan

Asst. Prof. of Radiation Chemistry in National Center for Radiation Research and Technology

Department head

Dean

This Work Is Dedicate To my parents Without Their Support, Endless Help and Continues Encouragement All the Time I Could Never Finish This Work

I Am So Proud To Be Your Daughter

Acknowledgement

First of all, the main thanks to "Allah" to whom I always pray and under the light of his "HOLLY FACE" I live and go.

Iwould like to offer my deep thanks to **Prof.Dr. El-Sayed A. Hegazy;** Prof. Of Radiation Chemistry, former chairman of National Center for Radiation Research and Technology For his continouse guidence, interest, valuable discussion, supervision and advices throughout this work.

Also, I am grateful to **Prof** .**Dr**. **Nagwa A. Badway**; Professor of Physical Chemistry, Faculty of Science (Girls), Al-Azhar University .for her great efforts, honest assistance, supervision and help to have this work done.

I would like to express my sincere gratitude and respect to Asst. Prof. Dr. Medhat M. Hassan; Asst. Prof. in National Center for Radiation Research & Technology, for his masterly teaching, valuable advices, honest assistance. wise guidance, kind supervision and continuous encouragement.

I wish to express my sincere gratitude to all the members and colleagues in the National Center for Radiation Research & Technology and Faculty of Science (Girls), Al-Azhar University, for their efforts, help and friendship throughout my research.

Abstract

Recycling of ground tire rubber (GRT) not only solves the waste disposal problem and maintains environmental quality, but also saves the valuable and limited resource of fossil feedstock. The major problem in the recycling of rubber-like materials such as tires is the cross linked molecular structure of already vulcanized rubber, which not only prevents the softening and processing of waste rubber particles but also inhibits binding of the powder surface to the virgin material. Several reclamation methods have proposed to overcome these barriers, which have basically followed two main approaches: (1) the devulcanization of cured rubber and (2) the surface modifications of waste particles. The devulcanization of rubber causes the cleavage of crosslinks via chemical treatments, which make used rubber suitable to be reformulated and recurred into new articles. In consequence, this work is mainly aimed to prepare of devulcanized rubber (DR) and evaluating mechanical, thermal, and morphological properties of the thermoplastic vulcanizates (TPVs) based on devulcanized rubber blended with polypropylene, EPDM using peroxide under the effect of radiation dose and DR feed ratio. The efficiency of the compounding process has been examined by infrared spectroscopy (FTIR), X-ray diffraction and scanning electron microscopy (SEM). The mechanical and thermal behaviors of the blends composed of devulcanized rubber (DR), high crystalline polypropylene (PP) and EPDM in different proportions were studied. Evaluation of the mechanical and thermal properties of the developed blends, unirradiated and gamma irradiated, was carried out using tensile strength (Ts), elongation at break (Eb), hardness, TGA and DSC measurements.

Keywords: -

Recycling / ground tire rubber / devulcanization / thermoplastic vulcanizates / gamma radiation / thermal behavior / mechanical properties

<u>Aim of work</u>

Because of the large volumes of scraps associated with rubber production, the old practice of landfilling has been unable to keep up with production because of rising land costs, environmental concerns and fire risks occurring at this site. Considering that vulcanized rubber is not easily biodegradable, recycling methods must be proposed in order to solve this environmental problem and recover a material with high commercial value. The cross-linking of the polymer main chains during the vulcanization process turns the thermoplastic into a thermoset material, which cannot be remolded by simple heating. In order to break down the cross-linked network of vulcanized rubber, some physical or chemical treatment is necessary. The objective of this work is to try to get the new material from this waste be remolded to the formation of heat that can be used in multiple applications. This well be prepared devulcanized rubber (DR) by partially break down the cross-linked network using mechanochemical treatment method. Also; the coupling of DR with PP and EPDM in different proportion was investigated in the presence of peroxide by FTIR, Xray diffraction and SEM techniques. The mechanical and thermal behaviors of the blends composed of devulcanized rubber (DR) and other materials in different proportions were studied. Evaluation of the mechanical and thermal properties of the developed blends, unirradiated and gamma irradiated, was carried out using tensile strength (Ts), elongation at break (Eb), hardness, TGA and DSC measurements. Possible applications will be evaluated based on mechanical and thermal properties and other characteristics

List of Abbreviations	
List of Tables	
List of Schemes	
List of Figures	
Introduction	1
1.1. Use and reuse of rubber products	2
1.1.1. Rubber in everyday life	2
1.1.1.1. The use of tires	2
1.1.1.2. Tires: production, composition and properties	3
1.1.1.3. Classification of used tires	3
1.1.1.4. Waste rubber landfill	4
1.1.2. End of life tires valorization	5
1.1.3. Waste rubber as fuel source	5
1.2. Reclamation of rubber products	6
1.3. Rubber devulcanization processes	8
1.3.1. Classification of devulcanization process	8
1.3.1.1. Chemical Processes	8
1.3.1.2. High-Shear Mixing	9
1.3.1.3. High-Energy Excitation	9
1.3.1.4. High-Pressure Steam	9
1.3.1.5. Microbial Desulfurization	9
1.4. Recent developments in devulcanization of rubbers	10
1.4.1. Preparation of devulcanized rubber by De-Link process	10
1.4.2. Devulcanization of rubbers by the use of a renewable resource	10
material	
1.5. Thermoplastic elastomers	10
1.5.1. Phase arrangements of thermoplastics elastomers	13
1.5.2. TPE Advantages and disadvantages over conventional	14

Contents

vulcanized rubbers	
1.6. Thermoplastic vulcanizates (TPV)	15
1.7. Dynamic vulcanization	16
1.7.1. Radiation vulcanization	17
1.8. Applications	18
Literature Review	21
2.1. Waste rubber devulcanization	21
2.1.1. Devulcanizing agent	24
2.1.2. Devulcanization cases	26
2.1.3. Devulcanized rubber in rubber blends	29
2.1.4. Devulcanized rubber in TPEs	30
2.2. Scrap rubber in TPEs	35
2.3. EPDM in TPEs	37
2.4. Ternary blends in TPEs	39
2.5. Virgin TPVs	41
2.6. TPVs vulcanization via irradiation	42
2.7. TPVs vulcanization via peroxides	46
Materials and Experimental Techniques	53
3.1.Materials	53
3.2. Experimental Techniques	53
3.2.1.Preparation of sample	53
3.2.1.1. Preparation of devulcanized rubber	53
3.2.1.2.Prepartion of blends	54
3.2.1.3. Preparation of thermoplastic elastomeric olefins (TEOs)	54
3.2.1.4. Preparation of thermoplastic vulcanized(TPVs)	55
3.2.1. 5.Molding	56
3.2.1.6.Gamma radiation treatment	56
3.2.2.Methodologies technique	57
3.2.2.1. Fourier Transform Infrared Spectroscopy (FTIR)	57
3.2.2.2. Sol–gel analysis	57
3.2.2.3. Mechanical measurements	57

3.2.2.3.1. Hardness Measurements	57
3.2.2.4.Thermal Analysis	58
3.2.2.4.1. Differential scanning calorimetry (DSC)	58
3.2.2.4.2. Wide angle X-ray diffraction (WAXD)	58
3.2.2.4.3.Thermogravimetric analysis (TGA)	59
3.2.2.4.4. Kinetic analysis	59
3.2.2.5.Morphological characterization	60
Results and Discussion	61
4.1.1. Characterization of devulcanized rubber	61
4.1.1.1. Sol–gel analysis	61
4.1.1.2. Fourier Transform Infrared Spectroscopy (FTIR)	62
4.1.1.3. Thermogravimetric analysis (TGA)	63
4.1.1.4. Scanning electron microscopy (SEM)	64
4.1.2. Characterization of DR/PP blends	65
4.1.2.1. Gel fraction analysis	65
4.1.2.2. Infrared spectroscopic analysis (FTIR)	66
4.1.2.3. Mechanical measurements	68
4.1.2.4. Differential scanning calorimetry (DSC)	69
4.1.2.5. Wide angle X-ray diffraction (WAXD)	73
4.1.2.6. Thermogravimetric analysis (TGA)	75
4.1.2.7. Kinetic analysis	79
4.1.2.8. Scanning electron microscopy (SEM)	81
4.1.2.9. Conclusions	83
4.2.1. Radiation- peroxide synergistic vulcanization of DR/P	84
4.2.1.1. Theoretical considerations on a network formation	85
4.2.1.2. Gel fraction analysis	87
4.2.1.3. Fourier Transform Infrared Spectroscopy (FTIR)	88
4.2.1.4. Mechanical measurements	89
4.2.1.5. Differential scanning calorimetry (DSC)	92
4.2.1.6. Wide angle X-ray diffraction (WAXD)	94
4.2.1.7. Thermogravimetric analysis (TGA)	97

\sim		
Co	nto	ntc

4.2.1.8. Kinetic analysis	99
4.2.1.9. Scanning electron microscopy (SEM)	101
4.2.1.10. Conclusions	101
	103
4.3.1.Radiation-peroxide synergistic vulcanization of EPDM/PP	104
4.3.1.1. Gel fraction analysis	105
4.3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)	105
4.3.1.3. Mechanical measurements	107
4.3.1.4. Differential scanning calorimetry (DSC)	110
4.3.1.5. Wide angle X-ray diffraction (WAXD)	111
4.3.1.6. Thermogravimetric analysis (TGA)	113
4.3.1.7. Kinetic analysis	116
4.3.1.8. Scanning electron microscopy (SEM)	118
4.3.1.9. Conclusions	120
4.4.1. Radiation-vulcanization of DR/PP/EPDM	121
4.4.1.1. Gel fraction analysis	121
4.4.1.2. Fourier Transform Infrared Spectroscopy (FTIR)	122
4.4.1.3. Mechanical measurements	124
4.4.1.4. Differential scanning calorimetry (DSC)	126
4.4.1.5. Wide angle X-ray diffraction (WAXD)	127
4.4.1.6. Thermogravimetric analysis (TGA)	131
4.4.1.7. Kinetic analysis	133
4.4.1.8. Scanning electron microscopy (SEM)	135
4.4.1.9. Conclusions	136
4.5.1. Radiation-peroxide synergistic vulcanization of	138
DR/PP/EPDM	
4.5.1.1. Gel fraction analysis	138
4.5.1.2. Mechanical measurements	139
4.5.1.3. Differential scanning calorimetry (DSC)	142
4.5.1.4. Wide angle X-ray diffraction (WAXD)	144
4.5.1.5. Thermogravimetric analysis (TGA)	146

	Contents
4516 Vinatio analysis	148
4.5.1.6. Kinetic analysis	_
4.5.1.7. Scanning electron microscopy (SEM)	150
4.5.1.8. Conclusions	152
Summary and Conclusion	154
References	157
Arabic Summary	172