

Ain Shams University

Faculty of Science

Department of Zoology

DNA analysis of degraded materials using different extraction methods

A thesis

Submitted in partial fulfillment of the requirements for the award of the Master degree in Science

By

Mahdi Ali Abdullah Haidar

B.Sc. (Genetics)
Faculty of Science, Leeds University, UK
2004

Supervised by

Prof. Dr. Hamdy Hamed Swelim

Professor of Cell Biology Faculty of science Ain Shams University Prof. Dr. Mohamed Sayed Slama
Professor of Molecular Biology
Faculty of science
Ain Shams University

Dr. Mohamed Abdullah Alenizi

Dr of Forensic Medicine Kuwait Identification Centre Ministry of Interior, State of Kuwait

> Zoology Department Faculty of Science Ain Shams University 2014

Table of Contents

Acknowledgement	IV
Abstract	\mathbf{V}
List of figures	VI
List of tables	IX
List of abbreviations	XI
Chapter 1: Introduction and aim of the work	
1.1 Introduction	1
1.2 Aim of the work	2
Chapter 2: Review of literature	
2.1 Review of literature	4
2.2 DNA fingerprinting	7
2.3 DNA polymorphisms	9
2.3.1 Short tandem repeats (STRs)	10
2.3.2 Single nucleotide polymorphisms (SNPs)	13
2.3.3 Mitochondrial DNA	15
2.3.4 Y chromosome polymorphisms	17
2.4 Human identification	19
2.5 analysis of degraded DNA	20
2.6 Prediction of DNA preservation	23
2.7 Bone function and structure	23
2.8 The analysis of DNA from skeletal remains	25
2.8.1 Decontamination	26
2.8.2 Physical processing of skeletal material	27
2.8.3 Digestion of the bone matrix	28
2.8.4 DNA extraction	29
2.8.4.1 Phenol/Chloroform (Organic) Extraction	31
2.8.4.2 Silica-Based Extraction	32
2.8.4.3 Magnetic Particle Technique	34
2.9 History of the samples of the present study	34
2.9.1 DNA amplification of human remains in Kuwait	35

Chapter 3: Material and methods	
3.1 Materials	36
3.1.1 Samples	36
3.1.2 Reagents	36
3.1.3 DNA kits	37
3.1.4 Equipments	37
3.2 Method	38
3.2.1 Contamination control and Laboratory Design	40
3.2.2 Sample collection and preparation	41
3.2.3 Assessment of molecular preservation	42
3.2.3.1 Gross morphology	42
3.2.3.2 Histology	43
3.3.3.2.1 Decalcification (bone softening)	43
3.3.2.2 Tissue processing	43
3.3.2.3 Haematoxlin and Eosin (H&E) staining	44
3.3.2.4 Feulgen nuclear staining	44
3.3.2.5 Masson staining	45
3.2.4 DNA extraction	45
3.2.4.1 Silica-based DNA extraction methods	46
3.2.4.1.1 QIAamp DNA Blood Maxi Kit	46
3.2.4.1.2 NucleoSpin DNA Trace with bone buffer set	48
3.2.4.1.3 Modified protocol using DNeasy® Blood and	
Tissue Kit	50
3.2.4.2 Magnetic particles based extraction method	51
3.2.4.2.1 PrepFiler TM Forensic DNA Extraction Kit with	
bone buffer	51
3.2.4.3 Organic based DNA extraction	53
3.2.4.3.1 phenol/chloroform-based DNA extraction	53
3.3 Quantification	54
3.4 DNA profiling	56
Chapter 4: Results	
4.1 DNA extraction	57
4.2 morphology and histology	66

Chapter 5: Discussion 5.1 Assessment of DNA extraction protocols 5.2 Assessment of microstructure preservation

Chapter 6: Conclusion 104 **Chapter 7: References** 105

89

95

Chapter 8: English summary 129

Chapter 9: Arabic summary 133

Acknowledgement

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. I would like to express my appreciation to my supervisors Dr. Mohamed Sayed Salama and Dr. Hamdy Swelim for their support, understanding and help. My acknowledgement also goes to all colleagues and staff members in department of Zoology in Ain Shams University and to Prof.Dr. Abdul Hafiz Helmy who taught me a lot of things, May his soul rest in peace.

I would like to express my appreciation To Dr. Mohamed Alenizi for his supervision and constant support. His invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

Last but not least, my deepest gratitude goes to my beloved parents; for their endless love, caring, prayers and encouragement. Also, not forgetting my wife's attitude, love and caring when I was abroad seeking for the degree. Thanks to her for taking care and raising my children

To those who indirectly contributed in this research, your kindness means a lot to me.

Abstract

This project was designed and developed in response to the need to improve the methodology employed in the DNA extraction of the Kuwaiti victims of the First Gulf War (1990-1991). The main challenges have involved developing the methodology in an attempt to increase the DNA recovery from the skeletal remains and also assess the preservation of DNA.

In order to assess the methodology for DNA extraction and prediction of DNA preservation, 25 samples from femur and humerus of individuals who were killed during the Gulf War, which had not been analysed, were taken for analysis. These were exhumed from five gravesites, three in Iraq and two in Kuwait. All previous attempts to generate DNA profiles from the samples had failed. Therefore, some samples have been sent to three international laboratories; FSS (forensic Science Service), Bode Technology group (an international private DNA analysis laboratories) and ICMP (International Community OF Missing People). Unfortunately, results from those laboratories showed failed and partial profiles.

In the present study, DNA from bone samples were again extracted using five different extraction methods. PCR amplification of the extracts and the real-time quantification results showed that the modification of a silica-based method, using the Qiagen DNeasy® kit, was successful in removing inhibitors that were present in the extracts while other extraction methods failed.

The power of different methods to allow an effective system of triage (sorting of samples based on the likelihood of successful analysis) was examined. Two parameters were assessed: gross morphology and histology with the amount and quality of DNA that was recovered from different samples. Samples examined have displayed varying degrees of change. The samples from Iraqi site good morphological generally displayed and histological preservation. In contrast, the samples from the two sites within Kuwait displayed an almost complete lack of histological features and changes (pitting/cracks) to the surface. The morphological and histological preservation correlated closely with the success rate when extracting DNA from casework samples that were buried in Iraq and Kuwait.

List Of figures

Fig. (Base pairing of DNA strands to form double Helix	5
Fig. ((1.2):	The human genome contained in every Cell	6
Fig. ((1.3):	Restriction fragment length polymorphism (RFLP) analysis	8
Fig. ((1.4):	DNA amplification process with polymerase chain reaction (PCR)	9
Fig. ((1.5):	The structure of three commonly used STR loci, THO1, FGA and D21S11	12
Fig. ((1.6):	SNPs	14
Fig. ((1.7):	The HV1 and HV2 regions of the mtDNA	16
Fig. ((1.8):	Schematic diagram of the Y chromosome	18
Fig. ((1.9):	Hydrolytic damage of DNA	22
Fig. ((1.10)): Compact bone structure	25
Fig. ((2.1):	Sites map of samples for DNA analysis	38
Fig. ((2.2):	Design of DNA lab in the State of Kuwait	42

Fig. (4	extractions of humerus	61
Fig. (4	4.2): The average DNA recovered from triplicate extractions of femur	62
Fig. (4	1.3): The average of DNA amount in 100mg of bone extracted from the five sites	65
Fig. (4	4.4): DNA amount extracted from each humerus and femur bone	66
Fig. (4	4.5): Electropherograms of human samples at different sites	67
Fig. (4	4.6): Transverse undecalcified dry section unstained of femur bone from Iraq (X400)	70
- '	7.7): Transverse undecalcified dry section unstained femur bone from Iraq (X600)	70
- ,	4.8): Longitudinal undecalcified dry section unstained femur bone from Iraq (X400)	71
	4.9): Longitudinal undecalcified dry section unstained femur bone from Iraq (X600)	71

Fig. (4.10): Bones show destructive effect due the	
Environmental change and microorganisms	
activity	88
Fig. (4.11): DNA shown as a red purple spot inside	
the osteoblast	88

List of tables

Table (1.1):	Comparison of RFLP and PCR	11
Table (1.2):	The development of STR systems	13
Table (1.3):	The composition of different extraction Buffers	28
Table (1.4):	Summary of the work done in DNA Lab in Kuwait	35
Table (2.1):	25 samples were taken from 5 graves	39-40
Table (4.1):	The percentage of individuals recovered from five mass grave	58
Table (4.2):	Comparison of the five DNA extraction protocols	59
Table (4.3):	DNA recovered from random samples from each site	60
Table (4.4):	DNA quantification following extraction of 100 mg of powdered bone material	63-64

Table (4.5):	Comparison between gross morphology (100 x magnification), (H&E) histological	
	cross-sections (100 x magnification), and DNA quantities (ng/100 mg bone powder)	72-73
Table (4.6):	Comparison of Masson and Feulgen nuclear staining (100 x magnification)	
	of two femur bones	74-75
Table (4.7):	Haematoxlin and Eosin (H&E) cross-sections (400 x magnifications) compared to the DNA recovery (ng/mg bone powder)	76-80
Table (4.8):	Histological cross-sections (Masson and feulgen) at 100 x magnification compared to the DNA recovery (ng/mg bone powder)	81-82
Table (4.9):	Haematoxlin and Eosin (H&E) cross-sections (400 x magnifications) compared to the DNA recovery (ng/mg bone powder)	83-87

LIST OF ABBREVIATIONS

aDNA Ancient DNA

AE Qiagen elusion buffer

AL Qiagen lysis buffer

ATL Qiagen tissue lysis buffer

AW Qiagen washing buffer

BTA AB Bone, Tooth, and Adhesives buffer

CE Capillary Electrophoresis

CODIS Combined DNA Index System

DNA Deoxyribonucleic acid

DTT Dithiothretol

EDTA Ethylene diamine tetra acetic acid

FSS Forensic Science Service

H&E Haemotoxlin and Eosin

HVS-1 Hypervariable sequence region 1

HVS-2 Hypervariable sequence region 2

IPC Internal positive control

mtDNA Mitochondrial DNA

PCR Polymerase chain reaction

PK Proteinase K

RFLP Restriction fragment length polymorphism

SDS sodium dodecyl sulphate

SNP Single nucleotide polymorphism

STR Short tandem repeats

VNTRs Variable number tandem repeats

Chapter 1

Introduction and aim of the work