Pharmacological Studies on the Potential Anti-inflammatory Effects of a

Natural Product(s)

A Thesis Submitted in Partial Fulfillment for The

Requirements of the Master's Degree in Pharmaceutical

Sciences

(Pharmacology and

Toxicology) By

Alsiddeg Kamal Alsiddeg Mohammed Ahmed

B. Pharmacy (2010)

The Tamil Nadu, Dr. M.G.R Medical University, India

Supervisors

Prof. Abdel-Nasser Badawi Singab

Dean of the Faculty of Pharmacy,

Professor of Phytochemistry, Ain Shams

University

Prof. Amani Emam Khalifa

Professor of Pharmacology and Toxicology, Ain Shams
University. and Strategic Planning Consultant at 57357
Hospital.

Dr. Mai Fathy Tolba

Lecturer of Pharmacology and

Toxicology Faculty of Pharmacy,

Ain Shams University

Approval Sheet

Pharmacological Studies on the Potential Antiinflammatory Effects of a Natural Product(s).

Candidate Name:

Alsiddeg Kamal Alsiddeg Mohammed

Bachelor Degree in Pharmacy

Approved by the

committee in

charge: Prof.

Abdul Fatah

Hassan

Professor of

Pharmacology,

Faculty of Medicine, Cairo University.

Prof. Abdel-Nasser Badawi Singab

Dean of the Faculty of pharmacy, Ain Shams University. Professor of Phytochemistry, Faculty of Pharmacy, Ain Shams University

Prof. Amani Emam Khalifa

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, and Strategic Planning Consultant at 57357 Hospital.

Prof. Layla Ahmed Abd alaziz

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University.

/ 2015 /

I dedicate this thesis to my dear family, without their patience, understanding and support; this thesis would not be existed.

Acknowledgment

First and foremost, all thanks and praises are due to ALLAH, most gracious, most merciful, who granted me the ability to accomplish this work.

My deepest heartily thanks appreciation and sincerest gratitude to Prof. Abdel-Nasser Badawi Singab, Professor of Phytochemistry and Dean of Faculty of Pharmacy, Ain Shams University. I will always owe him so much for guiding and helping me. I really had the honor that he supervised this work.

Words can never express my deepest gratitude and sincere appreciation to Prof.

Dr. Amani Khalifa, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University. She provided me with her valuable instructions and expert touches, I really had the honor of having her supervision for this work.

I owe a heavy debt gratitude and profound heartfelt thanks to Dr. Mai Fathy Tolba, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams
University, who spared no time and effort
to provide me with her valuable guidance,
extreme patience, kind advice and
constructive opinions, I will always owe
her so much for guiding and helping me.

I would like also to express my gratitude and thanks to all of my colleagues in the Ain Shams University, especially, Abu Hussain (Mohammed Hussain) and Maha Magdy for their kind help and encouragement.

I would like to thank Dr. Iriny Ayoub, and Dr. Mohamed El-Shazly, in Phytochemistry Department, Faculty of Pharmacy, Ain Shams University, for their co-operation, and the team spirit that's I felt with them.

I would like to thank Dr. Adel B. Kholousy, professor of pathology, Cairo University.

For his help in performing of histopathological examination.

I would like to thank each one in the department of pharmacology and toxicology, Faculty of Pharmacy, Ain Shams University, for their kindness, I wish them every success.

Finally, my truthful affection and love to my parents and dear sisters who were, and will always be, by my side, all my life.

Al-Siddeg Kamal

Abstract

Background:

Over the past two centuries, natural products have played an invaluable role in drug discovery contributing enormously to the development of therapeutic agents currently used in modern medicine. *Dietes bicolor*, commonly known as Yellow Wild Iris, Peacock Flower or Butterfly Iris is a rhizomatous perennial herb belonging to family Iridaceae. The phytochemical and pharmacological properties of this genus have never been reported.

Aim: The current study was designed to investigate the anti- inflammatory of *Dietes bicolor* leaf extract. Moreover, phytochemical analysis of the biologically active fraction was carried out.

Methodology: The total leaf extract and its fractions were examined for possible anti-inflammatory activity in two experimental models: the carrageenan-induced rat edema model and the croton oil— induced ear edema model. Collectively, the parameters assessed included paw volume, PGE2 level, cytokines (TNF-α, IL-6, IFN-γ, IL-1α, IL-1β, MCP-1, RANTES and Macrophage Inflammatory Protein (MIP)), ear edema, ear tissue MPO and histopathology.

Results: *Dietes bicolor* extract demonstrated a dose-related reduction in both carrageenan-induced rat paw edema and croton oil-induced ear edema models. A flavone C-glycoside was isolated from the biologically active fraction which may contribute to its anti- inflammatory.

Topical application of *Dietes bicolor* reduced ear edema induced by croton oil in rats. In the same animal model, *Dietes bicolor* reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In addition, Dietes bicolor reduced the histopathological changes affected by croton oil application.

The biologically active fraction was subjected to further phytochemical analysis utilizing several chromatographic techniques. One major compound was isolated and its structure was elucidated using different spectroscopic techniques.

Conclusion: *Dietes bicolor* exhibited promising anti-inflammatory activity *in vivo*. The flavonoid content of *Dietes bicolor* may contribute to the possible biological effects of the extract.

Keywords:

Dietes bicolor; Iridaceae; anti-inflammatory; carrageenan-induced paw edema; croton oil-induced ear edema; Vitexin.

Contents

List of Abbreviations

AA			Arachidonic Acid
COX			Cyclooxygenase
CRP			C Reactive Protein
HOCL			Hypochlorous acid
HPLC-DAD	Chromatography	Liquid with Die	High-Performance ode-Array Detection
ICF			Intracellular Fluids
IL-1 α			Interleukin-1 alpha

IL-1 β	Interleukin-1 beta	
IL-6	Interleukin-6	
IFN-γ	Interferon gamma	
IVF	Intravascular Fluids	
MCP-1	Monocyte Chemoattractant Protein-1	
MIP	Macrophage Inflammatory Protein	
MPO	Myeloperoxidase	
M Q	Macrophage	
NK cells	Natural Killer cells	
NO	Nitric Oxide	
NSAIDs	Nonsteroidal Anti-Inflammatory Drugs	
PGE2	Prostaglandin E2	
RANTES	T-cell Normal Activation, upon Regulated Expressed and Secreted	
ROS	Reactive Oxygen Species	
TAC	Total Antioxidant Capacity	
TNF-α	Tumor Necrosis Factor-alpha	

L is t o f T a b I e s

Table (1)	and	acute	between	differences	main	The
		chr	onic infla	nmatory proc	esses.	

Table (2)	Inflammation: The cellular mediators.
Table (3)	IL-1 Family Members.
Table (4)	Involvement of MCP-1/CCL2 in Different Diseases.
Table (5)	Edema inhibition by Dietes bicolor extract and
	fractions in carrageenan- induced paw edema model.
Table (6)	bicolor Dietes butanol by inhibition Edema
Table (7)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of PGE2 in paw edema exudates in carrageenan-
	induced rat paw edema model.
Table (8)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of TNF-α in paw edema exudates in carrageenan-
	induced rat paw edema model.
Table (9)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level of IL-1- α in paw edema exudates in carrageenan-
	induced rat paw edema model.
Table (10)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of IL-1 β in paw edema exudates in carrageenan-
	induced rat paw edema model.
Table (11)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of IL-6 in paw edema exudates in carrageenan-
	induced rat paw edema model.

Preface

Table (12)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of MCP-1 in paw edema exudates in carrageenan-
	induced rat paw edema model.

Table (13)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of Macrophage Inflammatory Protein (MIP) in paw
	edema exudates in carrageenan-induced rat paw
	edema model.
Table (14)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of IFN-γ in paw edema exudates in carrageenan-
	induced rat paw edema model.
Table (15)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of RANTES in paw edema exudates in carrageenan-
	induced rat paw edema model.
Table (16)	Effect of butanol extract of Dietes bicolor on the
	ear thickness in croton oil-induced rat ear edema
	model.
Table (17)	Effect of butanol extract of Dietes bicolor on the
	ear myeloperoxidase activity in croton oil-induced
	rat ear edema model.

L i

s t

o f

f

i

g u r

Fig (1)	degradation, synthesis, PGE2 of Regulation
	and responsiveness to PGE2.
Fig (2)	A schematic representation of the role of IL-1 in innate
	and adaptive immunity.
Fig (3)	Dietes bicolor photo.
Fig (4)	Chemical structure of vitexin.
Fig (5)	Ugo-Basile plethysmometer.
Fig (6)	HPLC-DAD chromatograms of vitexin.
Fig (7)	Edema inhibition by <i>Dietes bicolor</i> extract and fractions
	in carrageenan- induced paw edema model.
Fig (8)	bicolor Dietes butanol by inhibition Edema
Fig (9)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of PGE2 in paw edema exudates in carrageenan-
	induced rat paw edema model.
Fig (10)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of TNF-α in paw edema exudates in carrageenan-
	induced rat paw edema model.
Fig (11)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of IL-1 α in paw edema exudates in carrageenan-
	induced rat paw edema model.

Fig (12)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of IL-1 β in paw edema exudates in carrageenan-
	induced rat paw edema model.
Fig (13)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
118 (13)	of IL-6 in paw edema exudates in carrageenan-
	induced rat paw edema model.
Fig (14)	-
1'1g (14)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of MCP-1 in paw edema exudates in carrageenan-
71 (4.5)	induced rat paw edema model.
Fig (15)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of Macrophage Inflammatory Protein (MIP) in paw
	edema exudates in carrageenan-induced rat paw edema
	model.
Fig (16)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of IFN-γ in paw edema exudates in carrageenan-
	induced rat paw edema model.
Fig (17)	Effect of butanol Extract of <i>Dietes bicolor</i> on the level
	of RANTES in paw edema exudates in carrageenan-
	induced rat paw edema model.
Fig (18)	Effect of butanol extract of Dietes bicolor on the
	ear thickness in croton oil-induced rat ear edema
	model.
Fig (19)	Effect of butanol extract of <i>Dietes bicolor</i> on the ear
	MPO activity in croton oil-induced rat ear edema
	model.
Fig (20)	Effects of <i>Dietes bicolor</i> on histopathological changes
<i>5</i> (•)	in croton oil- induced ear edema model.

Introduction

Inflammation

Inflammation is the immune system's response to infection and injury. It has been implicated in the pathogeneses of arthritis, cancer and stroke, as well as in neurodegenerative and Inflammation cardiovascular disease. is an intrinsically beneficial event that leads to removal of offending factors and restoration of tissue structure and physiological function. Inflammation has been known to humankind for at least a few thousand years, in part because it accompanied two major scourges of the past, wounds and infections, and in part because it is rather conspicuous (Nathan, 2002).

Although references to inflammation can be found in ancient medical texts, apparently the first to define its clinical symptoms was the Roman doctor Cornelius Celsus in the 1st century AD. These symptoms came to be known as the four cardinal signs of inflammation: rubor et tumor cum calore et dolore (redness and swelling with heat and pain). Celsus mentioned these signs in his treatise De medicina, while describing procedures for treating chest pain, where he became an oft- quoted medical celebrity (Majno 1975). The physiological basis of the four cardinal

signs of inflammation were revealed much later by Augustus Waller (1846) and Julius Cohnheim (1867), who discovered leukocyte emigration from the blood vessels and other vascular changes characteristic of an acute inflammatory response. Analyzing living tissues under the microscope, Cohnheim observed vasodilation, leakage of plasma, and migration of leukocytes out of blood vessels and into the surrounding tissue (Majno and Joris, 2004). Once the initiating noxious

removed via phagocytosis, stimulus is inflammatory reaction can decrease and resolve. During the resolution of inflammation, granulocytes are eliminated, while macrophages and lymphocytes return to normal preinflammatory numbers and phenotypes. The usual outcome of the acute inflammatory program is successful resolution and repair of tissue damage, rather than persistence and dysfunction of the inflammatory response, which can lead to scarring and loss of organ function. It may be anticipated, therefore, that failure of acute inflammation to resolve may predispose to auto-immunity, chronic dysplastic inflammation and excessive tissue damage (Nathan 2002).