

Improvement of Water Quality to Reduce the Formation of Hazardous Disinfection By-Products Compounds

A Thesis Submitted for the degree of Master of Science as a partial fulfilment for requirements of the Master of Science

By

Mohamed Mossad Ahmed Amer (B.Sc. in Chemistry)

Department of Chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
2015

Improvement of Water Quality to Reduce the Formation of Hazardous Disinfection By-Products Compounds

A Thesis Submitted for the Degree of Master of Science as a Partial Fulfillment for Requirements of the Master of Science

By

Mohamed Mossad Ahmed Amer (B.Sc. in Chemistry)

Supervised by

Prof. Eglal Myriam Raymond Souaya Professor of Inorganic Chemistry Department of Chemistry, Faculty of Science, Ain Shams University

Dr/Ali M. Abdullah
Technical Support Manager TSM
Holding company for Water and Wastewater
Quality Manager Water Pollution and Marine
Environment Lab (WPMEL)

Department of Chemistry Faculty of Science
Ain Shams University
Cairo, Egypt
2015

Approval Sheet

M.Sc. Thesis

Entitled

Improvement of Water Quality to Reduce the Formation of Hazardous Disinfection By-Products Compounds

Thesis Advisors	Thesis Approved
Prof. Eglal Myriam Raymor	nd Souaya
Professor of Inorganic Chemis	stry
Department of Chemistry,	
Faculty of Science, Ain Shams	University
Dr/Ali M. Abdullah	
Technical Support Manager T	'SM
Holding company for Water a	and Wastewater
Quality Manager Water Pollu	tion and Marine
Environment Lab (WPMEL)	

Head of Chemistry Department

Prof. Dr. Hamed Ahmed Younes Derbala

ACKNOWLEDGMENT

First and not least, thanks and praise goes always and never unending to ALLAH, for giving me strength and patience to complete this work.

Many deep and sincere thanks are to **Prof. Dr. Eglal Rimon** Souaya, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University, for her interest, continuous encouragement, kind contribution and advice.

Also, I am deeply indebted to **Dr/Ali M. Abdullah** Technical Support Manager TSM Holding Company for Water and Wastewater Quality Manager Water Pollution and Marine Environment Lab (WPMEL) IGSR Alexandria University, for his supervision of work, his valuable and enlightened guidance, as well as his fruitful discussion all along the course of work.

My special words of thanks should also go to my Parents, for their helpful co-operation and encouragement during this work until it comes to light.

Finally, I would like to express my deepest thanks and profound gratitude to my sincerely Wife for her love, never-ending support and inspiration she gave me, She was always there cheering me up and stood by me through the good times and bad.

Subject	Page No.
List of Abbreviation	I
List of Tables	II
List of Figures	III
Published Papers	IV
Abstract	V
CHAPTER I: INTRODUCTION	1
CHAPTER II: LITERATURE REVIEW	6
2.1 Egypt Water Resources	6
2.1.1 River Nile	6
2.1.2 Ground Water	7
2.1.3 Rain Water	9
2.2 Water Pollution	10
2.3 Conventional Water Treatment	11
2.3.1 Coagulation and Flocculation	13
2.3.2 Disinfection	17
2.3.2.1 Chlorine	17
2.3.2.1.1 Chlorine Chemistry	18
2.3.2.2 Ozone	21
2.3.2.3 Chloramines	22
2.3.2.4 Chlorine Dioxide	23
2.3.2.5 Ultraviolet Irradiation	25
2.4 Disinfection By-Products (DBPs)	26
2.4.1 Trihalomethanes	27
2.4.2 Haloacetic acids	28
2.4.3 Haloacetonitriles	30
2.4.4 Halophenols	31
2.4.5 Bromate	31

2.4.6 Chlorite and chlorate	33
2.5 Factors Affecting the DBP Formation	33
2.5.1 Total Organic Carbon (TOC)	34
2.5.2 Disinfectant Type and Dose	35
2.5.3 Retention time	35
2.5.4 Temperature	36
2.5.5 PH	37
2.5.6 Bromide Ion	38
CHAPTER III: MATERIALS AND METHODS	39
3.1. Drinking Water Quality Assessment	39
3.1.1. Drinking Water Treatment Plants (WTPs)	39
3.2. Reference Materials, Reagents and Media	41
3.3. Analytical Methods	42
3.3.1. Sampling and Analytical Parameters	42
3.3.2. Determination of Trihalomethanes (THMs)	43
3.3.3. Determination of Haloacetic Acid (HAAs)	44
3.3.4. Determination of Factors Affecting the Formation of	45
DBPs	
3.3.4.1. pH	46
3.3.4.2. Temperature	46
3.3.4.3. Total Organic Carbon (TOC)	46
3.3.4.4. Bromide Concentration	47
3.3.4.5. Residual Free Chlorine	48
3.4. Software	49
3.4.1. MS Office 2007	49
CHAPTER IV: RESULTS AND DISCUSSION	50
4.1 Results of DBPs for the Greater Cairo Water Treatment	50
Plants	

0-	4		4 -
C_{Ω}	nt	en	ITS

4.1.1 Fustat WTP 4.1.2 Rod El Farag WTP 4.1.3 Shobra-El Khema WTP	50 55 60
4.1.2 Rod El Farag WTP	55
4.1.3 Shobra-El Khema WTP	60
4.1.4 El Obour WTP	65
4.1.5 El Roda WTP	70
4.1.6 El Tebeen WTP	75
4.1.7 Embaba WTP	80
4.2 Statistical Analysis of THMs, HAAs and TOC	87
4.3 Factors Affecting on the Formation of DBPs.	91
4.3.1 Effect of Water TOC on the Formation of DBPs.	91
4.3.2 Effect of Chlorine Dose and Residual Chlorine on the	94
Formation of DBPs.	
4.3.3 Effect of Water Residence Time on the Formation of DBPs.	97
4.3.4 Effect of Water pH on the Formation of DBPs.	100
4.3.5 Effect of Bromide Ion on the Formation of DBPs.	103
CHAPTER IV: SUMMARY AND CONCLUSION	107
REFERENCE	110
Arabic Summary	

LIST OF ABBREVIATION

No.	Abbreviations	Meaning
1	DBPs	Disinfectant By-Products
2	THMs	Trihalomethanes
3	HAAs	Haloacetic Acids
4	TOC	Total Organic Carbon
5	WHO	World Health Organization
6	km	Kilometer
7	TDS	Total Dissolved Solids
8	NOM	Natural Organic Material
9	HAAs	Haloacetic Acids
10	WTPs	Water Treatment Plants
11	NOM	Natural Organic Material
12	DOC	Dissolved Organic Carbon
13	UV	Ultraviolet Irradiation
14	HANs	Haloacetonitriles
15	EPA	Environmental Protection Agency
16	OSE	On-Site Electrochlorination
17	DCAA	Dichloro-Acetic Acid
18	TCAA	Trichloro-Acetic Acid
19	mm	Millimeter
20	μm	Micrometer
21	MTBE	Methyl-Tert-Butyl-Ether
22	min	Minute

23	μL	Micro Littre
24	μg/l	Microgram per Littre
25	mg/l	Milligram per Littre
26	IC	Ion Chromatography
27	BDCM	Bromodichloromethane
28	CHCl ₃	Chloroform
29	CHBr ₃	Bromoform
30	DBCM	Dibromochloromethane
31	ppm	Part per Million
32	GC	Gas Chromatography

LIST OF TABLES

Table No.	Table Name	Page No.
Table(1)	Greater Cairo WTPs technologies	41
Table(2)	Methods of chemical analysis, sample preservation, handling and storage	43
Table(3)	Results of THM, TOC and HAA in Fustat WTP	52
Table(4)	Results of THM, TOC and HAA in Rod El Farag WTP	57
Table(5)	Results of THM, TOC and HAA in Shobra-El Khema WTP	62
Table(6)	Results of THM, TOC and HAA in El Obour WTP	67
Table(7)	Results of THM, TOC and HAA in El Roda WTP	72
Table(8)	Results of THM, TOC and HAA in El Tebeen WTP	77
Table(9)	Results of THM, TOC and HAA in Embaba WTP	84
Table(10)	Statistical analysis of trihalomethanes for GCWC plants	87
Table(11)	Statistical analysis of haloacetic acids for GCWC plants	89
Table(12)	Statistical analysis of TOC acids for GCWC plants	90
Table(13)	Effect of water TOC on the formation of THMs	92
Table(14)	Effect of water TOC on the formation of HAAs (DCAA,TCAA).	93
Table(15)	Effect of water Cl ₂ dose on the formation of THMs	95
Table(16)	Effect of water Cl ₂ dose on the formation of HAAs	96
Table(17)	Effect of water Time (T) on the formation of THMs	98
Table(18)	Effect of water Time (T) on the formation of HAAs	99
Table(19)	Effect of water pH on the formation of THMs	101
Table(20)	Effect of water pH on the formation of HAAs	102
Table(21)	Effect of water Br on the formation of THMs	103
Table(22)	Effect of water Br on the formation of HAAs (DCAA, TCAA)	104

LIST OF FIGURES

Figure No.	Figure Name	Page No.
Figure (1)	Drinking water treatment process	11
Figure (2)	Coagulation and flocculation process	14
Figure (3)	Sampling sites in River Nile	40
Figure (4)	GC instrument used for determination of THMs and HAAs	45
Figure (5)	Jar test instrument used for carry out the experiments which study the factors affecting of DBPs formation potential	45
Figure (6)	pH meter (sension3 Hack, USA) for determination of pH and Temperature	46
Figure (7)	Sievers 5310 C for determination of TOC	47
Figure (8)	IC (ion chromatography) Metrom used for determination of bromide	48
Figure (9)	DR/890 colorimeter Hack, USA for determination of residual chlorine	49
Figure (10)	THM analysis of Fustat WTP during the period of study	53
Figure (11)	HAA analysis of Fustat WTP during the period of study	53
Figure (12)	TOC analysis of Fustat WTP during the period of study	54
Figure (13)	THM analysis of Rod El Farag WTP during the period of study	58
Figure (14)	HAA analysis of Rod El Farag WTP during the period of study	58
Figure (15)	TOC analysis of Rod El Farag WTP during the period of study	59
Figure (16)	THM analysis of Shobra-El Khema WTP during the period of study	63

Figure (17)	HAA analysis of Shobra-El Khema WTP during the period of study	63
Figure (18)	TOC analysis of Shobra-El Khema WTP during the period of study	64
Figure (19)	THM analysis of El Obour WTP during the period of study	68
Figure (20)	HAA analysis of El Obour WTP during the period of study	68
Figure (21)	TOC analysis of El Obour WTP during the period of study	69
Figure (22)	THM analysis of El Roda WTP during the period of study	73
Figure (23)	HAA analysis of El Roda WTP during the period of study	73
Figure (24)	TOC analysis of El Roda WTP during the period of study	74
Figure (25)	THM analysis of El Tebeen WTP during the period of study	78
Figure (26)	HAA analysis of El Tebeen WTP during the period of study	78
Figure (27)	TOC analysis of El Tebeen WTP during the period of study	79
Figure (28)	THM analysis of Embaba WTP during the period of study	85
Figure (29)	HAA analysis of Embaba WTP during the period of study	85
Figure (30)	TOC analysis of Embaba WTP during the period of study	86
Figure (31)	Effect of water TOC on the formation of THMs	92
Figure (32)	Effect of water TOC on the formation of HAAs (DCAA, TCAA).	93
Figure (33)	Effect of water Cl ₂ dose on the formation of THMs	95

Figure (34)	Effect of water Cl ₂ dose on the formation of HAA	96
Figure (35)	Effect of water Time (T) on the formation of THMs	98
Figure (36)	Effect of water Time (T) on the formation of HAA	99
Figure (37)	Effect of water pH on the formation of THM	101
Figure (38)	Effect of water pH on the formation of HAA	102
Figure (39)	Effect of water Br on the formation of THMs	104
Figure (40)	Effect of water bromide on the formation of HAA	105

Research Article Open Access

Seasonal Variation of Trihalomethanes Levels in Greater Cairo Drinking Water

Eglal MR Souaya¹, Ali M Abdullah^{2*} and Mohamed Mossad³

¹Department of Chemistry, Faculty of Science, Ain Shams University, Egypt ²Holding Company for Water and Wastewater, O and M Sector, Egypt ³Holding Company for Water and Wastewater, Reference Laboratory, Egypt

Abstract

The formation of carcinogenic Trihalomethanes (THMs) in the process of water disinfection by chlorine has raised concerns in the scientific community. This study aims to determine the levels of THMs in Greater Cairo drinking water over year of the study and compare it with the regulation in the Egypt law (458/2007), and the World Health Organization. The THMs concentration was measured in five different locations during 2014. The results indicate that the seasonal variation is below the critical values stipulated in the state, WHO and Egyptian regulations (seasonal average $45.14 \pm 9.23 \,\mu\text{g/l}$). In conclusion, it can be inferred that the concentration of THMs in the drinking water of Greater Cairo is not hazardous to human health.

Keywords: Drinking water; Greater Cairo; Trihalomethanes

Introduction

Chlorine disinfection processes and other oxidation processes to inactivate harmful microorganisms are questioned by the potentially toxic by-products formed during disinfection. Chloroform, a Trihalomethane produced during chlorination, was shown to be a carcinogen for mice and rats [1]. THMs are the most commonly occurring and toxic DBPs found in chlorinated waters [2]. There is a variety of disinfection methods being use worldwide for treatment, but chlorination is the most common method among these methods. Water disinfection with chlorine improves the hygienic quality of water by eliminating waterborne bacterial pathogens such as dysentery and diarrhea diseases, cholera, typhoid fever, hepatitis A, etc. Residual chlorine can protect water from secondary pollution in the water network; also Chlorine application is simpler than other disinfectants. The usage of chlorine consequences a wide range of organic compounds (DBPs), which occur due to the reaction between chlorine with natural organic compounds, mainly humic substances [3]. One of the main groups of DBPs is THMS compounds. Clark et al. suggested that; more than 500 DBPs have been identified in tap water [4,5]. Chloroform, a DBP was first identified in the finished drinking water in 1974 in the Netherlands by Rook and in the United States by Bellar et al. [6].

A statistical correlation was developed to predict the concentration of chloroform formation as function of pH, temperature and distance (near or far) between a reservoir and a point of interest in the distribution system. This correlation is qualitative in the sense that distance and time are not included implicitly in it [6].

Many studies cited that the generated a multiple regression model for predicting THMs level in the finished water leaving a treatment plant. The correlation implies that THMs formation is higher in summer through autumn and lower in winter through spring.

Sokeng et al. described a mathematical model that applies second order kinetics to predict the chlorine residuals and demonstrates that THMs formation can be characterized as a function of chlorine demand [7]. The parameters of this model are correlated as a function of pH, TOC, temperature and chlorine residual. The formation of THMs in drinking water has been shown to be a function of various water quality parameters and chlorination conditions. THMs formation is one of the slowest known reactions in water treatment and a number of important factors influence this reaction. These include residence time, pH, temperature, bromide ion concentration, chlorine dosage, type of

organic precursor and the Total Organic Carbon (TOC).

In the present paper, the overall objective is to monitoring and understanding of the effect of water parameters on THMs formation in Greater Cairo region drinking water.

Materials and Methods

The city of Cairo is capital of Egypt and has about 15000000 inhabitants. Even though it has sufficient water resources and permanent water flows (river Nile). The statistics show that the average amount of water per inhabitant is about 200-250 liters per day. The drinking water in Cairo is disinfected with gaseous chlorine without any kind of special treatment.

The experimental part of the research was done in the laboratories of the Holding Company for Water and Wastewater. Five sample points were selected in the city of Cairo and during the study 2014 the drinking water samples were analyzed.

The water samples were collected from five water treatment plants and its distribution systems, Water samples at the specified locations were collected in 60 ml glass bottles (amber glass), which were filled without passing air bubbles through the sample. Before sampling, a solution of sodium thiosulfate was added to the amber bottles to eliminate any remaining residual chlorine and to stop further THM formation. Each glassware used was previously washed with phosphate-free detergent, rinsed with ultrapure water (Milli-Q) and acetone (HPLC grade). Then, it was placed in an oven at 150°C for two hour and cooled at room temperature.

Samples were prepared by extracting 10 ml of water with 2 ml of pentane by shaking for 2 min in a separation funnel of 25 ml. Phase separation occurred within 3 min and the upper phase was collected into 2 ml vials having screw caps with PTFE septa. THM measurements

*Corresponding author: Ali M Abdullah, Holding Company for Water and Wastewater, O and M Sector, Egypt, Tel: 002-012-292-480-37; E-mail: dr2252000@dr.com

Received February 20, 2015; Accepted March 19, 2015; Published March 24, 2015

Citation: Souaya EMR, Abdullah AM, Mossad M (2015) Seasonal Variation of Trihalomethanes Levels in Greater Cairo Drinking Water. Mod Chem appl 3: 149. doi:10.4172/2329-6798.1000149

Copyright: © 2015 Souaya EMR. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

were made using a gas chromatograph equipped with electron capture detector (GC-ECD, Varian, Model CP-3800). Chromatographic separation was accomplished with a capillary column DB-5 (J and W Scientific Inc./Agilent Technologies, 30 mv \times 0.25 mm \times 0.25 µm). The GC oven temperature program was as follow: initial temperature in 40°C for 2 min and then ramped 10°C per min until 150°C. Carrier gas (N2) at a flow rate of 0.8 ml min $^{-1}$ and split ratio of 1:10 was used in each experiment. It was injected 2 µl of each sample in the capillary column. For the calibration curve, standard solutions of CHCl $_3$ (Supelco Inc., 98.8%), CHBrCl $_2$ (Supelco Inc., 99.9%), CHBr $_2$ Cl (Supelco Inc., 99.0%), and CHBr $_3$ (Supelco Inc., 99.9%) in concentrations ranging from 0.05 to 100 µg/l in ultrapure water (Table 1).

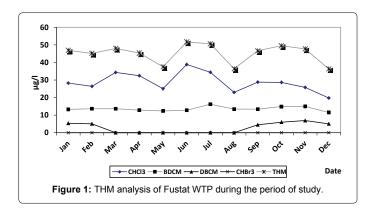
Result and Discussion

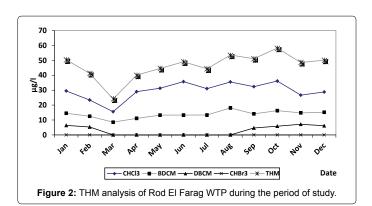
The experimental results have been presented in Figures 1-6. The concentration of THMs on the sample points vary from one month to another at a low rate. Therefore, the average values of THM concentrations during the present study in Fustat district (South of Cairo) were 45.14 $\mu g/l$, respectively, the minimum value observed during December 2014 and the maximum value observed during July 2014 as shown in Figure 1. The average values of THM concentrations during the present study in Rod El-Farag district (middle of Cairo) were 46.28 $\mu g/l$, respectively, the minimum value observed during March 2014 and the maximum value observed during October 2014 as shown in Figure 2.The average values of THM concentrations during the present study in Shoubra district (North of Cairo) were 51.40 $\mu g/l$, respectively, the minimum value observed during May 2014 and the maximum value observed during May 2014 and the maximum value observed during October 2014 as shown in Figure 3.

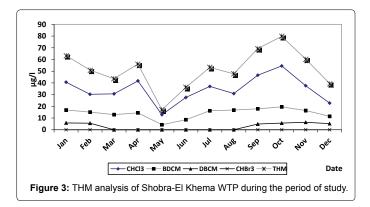
The average values of THM concentrations during the present study in El-Obour district (East of Cairo) were 44.32 $\mu g/l$, respectively, the minimum value observed during May 2014 and the maximum value observed during October 2014 as shown in Figure 4. The average values of THM concentrations during the present study in El-Roda district (East of Cairo) were 49.95 $\mu g/l$, respectively, the minimum value observed during March 2014 and the maximum value observed during June 2014 as shown in Figure 5.

All samples collected from five districts had THM less than the Egyptian regulation limits (100 $\mu g/l$).

In 1988, Ali et al. found that THM in drinking water of Kuwait (from rooftop tanks) averaged 25.6 \pm 9.1 $\mu g/l$ with a maximum recoded value of 50.5 $\mu g/l$. the THM formation generally favored by high temperature, chlorine residue and source natural organic matters composition (NOMs) [8-10] .


The observed seasonal variation of THMs was consistent with earlier studies reported maximum THM formation in summer [11]. $\text{CHCl}_2 \text{ Br and CHClBr}_2 \text{ exhibit inconsistent higher mean seasonal variations in winter than summer as indicated in Figures 1-5}.$


These higher mean values in winter can be attributed to characteristics of natural organic matter and changes in the nature of THM precursors in the source water [12-15].


Compound	WHO (2012)	Egypt (2007)
Chloroform	0.300	0.300
Bromodichloromethane	0.100	0.100
Dibromochloromethane	0.60	-
Bromoform	0.100	0.100
Total Trihalomethanes	0.100	0.100

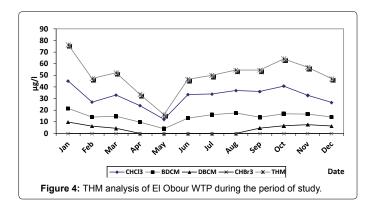

The maximum permissible limits

Table 1: Standards/recommending guidelines for THMs (mg/l) in the world jurisdictions.

