

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ANALYSIS AND BEHAVIOR OF SINGULAR STEEL ANCHORAGES IN R/C STRUCTURES

BY EMAN IBRAHIM ISMAIL SAADAWY

B.Sc. Civil Engineering, 2000 Structural Division Ain Shams University

A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE MASTER DEGREE IN CIVIL ENGINEERING (STRUCTURAL)

SUPERVISED BY

Prof. Dr. SHAKER EL-BEHAIRY

Professor of R/C Structures, Structural Eng. Department, Ain Shams University Dr. FATHY SAAD

Associate Professor of R/C Structures, Structural Eng. Department, Ain Shams University AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERIG
STRUCTURAL ENG. DEPARTMENT

Abstract of Master Degree Thesis submitted by

Eng. Eman Ibrahim Ismail Saadawy

Title of thesis:

ANALYSIS AND BEHAVIOR OF SINGULAR STEEL ANCHORAGES IN R/C STRUCTURES

Supervisors:

Prof. Dr. Shaker A. EL-Behairy Prof. of R/C Structures

Dr. Fathy A. Saad Assoc. Prof. of R/C Structures

Abstract

This thesis discusses the behaviour of steel teeth connectors in concrete to highlight the different possibilities of applying vertical and horizontal teeth connectors and investigates their structural behaviour experimentally.

In this research, five reinforced concrete slabs 1200 x 1200 mm, with rigid horizontal and vertical teeth connectors, were casted and tested to examine different parameters such as teeth arrangement, geometry (height and number) and the effect of presence of headed shear studs.

In the analytical study, a finite element program "Straus7 Release 2.2.3" was applied to all the tested specimens, to get the most reasonable STM to simulate the structural behaviour of tested specimens, comparisons were performed between strut and tie models and FE models results to verify that they are correctly according to the stress trajectories obtained from FE modeling.

Comparisons between strut and tie models and experimental results were performed to ensure the accuracy of the proposed models in predicting specimens' behaviour, as well as deformations and strains in both concrete and steel reinforcement.

From these comparisons, some conclusions are predicted, which will help in the design of this type of steel anchorages.

Keywords: anchorage; shear connectors; strut and tie method; strut and tie model; teeth; reinforced concrete slabs.

Table of Contents

	Page
APPROVAL SHEET	i
ABSTRACT	ii
ACKNOWLEDGMENT	iv
STATEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF PHOTOS	xxi
1 INTRODUCTION	
1.1 General	1
1.2 Objectives	2
1.3 Scope of Work	2
1.4 Experimental Program	3
1.5 What is Strut and Tie Model	4
1.6 Analytical Study	4
1.7 Strut and Tie and Finite Element	5
1.8 Description of thesis contents	6
2 LITERATURE REVIEW	
2.1 Synopsis	8
2.2 Shear Connectors	9
2.2.1 General	9

	Table of contents
2.2.2 Classification of shear Connected	or 9
2.2.3 Arrangement of Round Steel B	ar Connectors 11
2.2.4 Resistance of Shear Connectors	11
2.2.4.1 Non-Rigid Connectors	11
2.2.4.2 Rigid and Semi-Rigid Conne	ectors 12
2.2.5 Size and Spacing of Connectors	13
2.2.6 Design of Pitch of Connectors	13
2.2.7 The Forces Applied to Connecte	ors 14
2.2.8 Stud Shear Connectors	22
2.2.9 Strength of The Shear Connector	ors 24
2.2.10 Strength of the Stud Shear Con	nectors in a 25
Composite Beam	
2.3 Analysis of the Force Anchorage using	Strut and Tie 26
Method	
2.3.1 Introduction	26
2.3.2 Case Study of Bridge Substruc	ture Using STM 30
2.4 Concluding Remarks	34
3 SAW-TOOTH CONNECTIONS	
3.1 General	36
3.2 Early Applications of Saw-Tooth Con	
3.2.1 A Footbridge Suspended From	
Building	
3.2.2 Some Other Self-Anchored Sus	pended Foot- 45
	pended 1 00t- 43
Bridges	

	Ta	able of contents
	3.2.3 The Evripos Cable-Stayed Highway Bridge	e 48
		_
	3.2.4 The Cable-Supported Highway Bridge a	ι 50
2.2	Ingolstadt	
3.3	First Application of Improved Saw-Tooth Conne	
	3.3.1 The Basic Types	52
	3.3.2 The Improved Geometry	53
	3.3.3 The Bridge over the Nesenbachtal at Stu	ttgart 54
3.4	Arrangement of Saw-Tooth Connections	58
3.5	Structural Behavior and Detailing of Saw-Tooth	59
	Connections	
3.6	Influences on the Load Capacity of Saw-Tooth	61
	Connections	
3.7	Geometry of the Connection Surface	66
	3.7.1 Principal Idea	66
	3.7.2 Geometry of the Teeth	67
3.8	Experimented Specimens	70
4 TH	E EXPERIMENTAL PROGRAM	
4.1	General	75
4.2	Details of Tested Specimens	76
4.3	Test Set-up	88
4.4	Test Procedures	92
4.5	Material Properties	92
	4.5.1 Concrete	92
	4.5.1.1 Concrete Mix Design	93

Table of	of contents
4.5.1.2 Slump	93
4.5.1.3 Control Specimens	94
4.5.2 Steel Reinforcement	95
4.6 Fabrication of the tested specimens	95
4.6.1 Casting and curing of concrete	98
4.7 Instrumentations	100
4.7.1 Load	100
4.7.2 Deflections	100
4.7.2.1 Vertical Deflections	100
4.7.2.2 Lateral Deflections	100
4.7.3 Strains	101
4.7.4 Crack width	104
5 EXPERIMENTAL RESULTS AND DISCUSSIO	NS
5.1 General	105
5.2 Behavior of the Tested Specimens	106
5.2.1 Cracking and Ultimate Loads	108
5.2.2 Crack Pattern and Failure Mode	112
5.2.3 Deformational Behavior	119
5.2.3.1 In-plane Displacement of the	121
Connectors	
5.2.3.2 Vertical Displacement of the Stee	el 125
Connectors	.1 123
	130
5.3 Steel and Concrete Strains	
5.4 Concluding Remarks	136

182

NALYT	CICAL MOI	DELING USING STRUT AND	
E ME	ГНОД		
l Synop	osis		139
2 Strut a	and Tie Metho	od	140
6.2.1	General		140
6.2.2	Basic Conce	pts of Strut and Tie Modeling	141
6.2.3	STM Model	Design Flow Chart	144
3 Mode	ling Methodo	logy	145
4 Finite	Element Mod	leling	145
6.4.1	Modeling M	ethodology	146
6.4.2	Material Pro	perties	147
	6.4.2.1	Concrete	147
	6.4.2.2	Steel Reinforcement	148
	6.4.2.3	Steel Connector	149
6.4.3	Models Solu	tions	149
5 Strut a	and Tie Mode	ling	165
6.5.1	Models Solu	tions	172
6.5.2	Assumptions	s and Iterations	172
OMPAI	RISON BET	WEEN EXPERIMENTAL	
ND ST	M RESULT	S	
l Gener	al		174
2 Comp	arison Betwe	en Experimental and STM Results	174
3 Stress	Calculation a	and Verification of STM	178
	1 Synop 2 Strut a 6.2.1 6.2.2 6.2.3 3 Mode 4 Finite 6.4.1 6.4.2 6.4.3 5 Strut a 6.5.1 6.5.2 DMPAI ND STI 1 Gener 2 Comp	Synopsis Strut and Tie Metho 6.2.1 General 6.2.2 Basic Conce 6.2.3 STM Model Modeling Methodo Finite Element Mod 6.4.1 Modeling M 6.4.2 Material Pro 6.4.2.1 6.4.2.2 6.4.2.3 6.4.3 Models Solu Strut and Tie Model 6.5.1 Models Solu 6.5.2 Assumptions OMPARISON BET ND STM RESULT General Comparison Between	Strut and Tie Method 6.2.1 General 6.2.2 Basic Concepts of Strut and Tie Modeling 6.2.3 STM Model Design Flow Chart Modeling Methodology Finite Element Modeling 6.4.1 Modeling Methodology 6.4.2 Material Properties 6.4.2.1 Concrete 6.4.2.2 Steel Reinforcement 6.4.2.3 Steel Connector 6.4.3 Models Solutions Strut and Tie Modeling 6.5.1 Models Solutions 6.5.2 Assumptions and Iterations OMPARISON BETWEEN EXPERIMENTAL ND STM RESULTS

7.3.1 Specimen (S1)

	Table of contents
7.3.2 Specimen (S2)	184
7.3.3 Specimen (S3)	186
7.3.4 Specimen (S4)	188
7.3.5 Specimen (S5)	190
8 CONCLUSIONS AND RECOMMEND	DATIONS
8.1 Summary	193
8.2 Conclusions	194
8.3 Recommendations for Future Work	196
9 REFRENCES	198
Arabic Summary	206

List of Tables

LIST OF TABLES

Table		Page
4-1	Details of the tested Specimens	77
4-2	Results of the Slump Test	93
4-3	Results of compressive strength of control specimens	94
5-1	Cracking and ultimate loads values for tested specimens.	107
6-1	Most reasonable STM for tested specimens	173
7-1	Comparison between STM and Experimental results of specimen (S1)	f 183
7-2	Allowable strength of specimen (S1)	184
7-3	Comparison between STM and Experimental results of specimen (S2)	f 185
7-4	Allowable strength of specimen (S2)	186
7-5	Comparison between STM and Experimental results of specimen (S3)	f 187
7-6	Allowable strength of specimen (S3)	188
7-7	Comparison between STM and Experimental results of specimen (S4)	f 189
7-8	Allowable strength of specimen (S4)	190
7-9	Comparison between STM and Experimental results of specimen (S5)	f 191
7-10	Allowable strength of specimen (S5)	192

List of Photos

LIST OF PHOTOS

Photo		Page
2.1	Case Study - Completed Bridge	31
3.1	Movable and fixed anchorages of self-anchored suspension bridges at Stuttgart	46
4.1	Details of one end support (Behind the load)	90
4.2	Details of one end support (Front of the load)	91
4.3	Loading system	91
4.4	Details of the spherical steel part	91
4.5	Hydraulic Machine used in Testing Concrete Cubes	94
4.6	Wooden works used in construction of the models	95
4.7	Steel teeth connector and reinforcement of specimen (S1)	96
4.8	Steel teeth connector and reinforcement of specimen (S2)	96
4.9	Steel teeth connector and reinforcement of specimen (S3)	97
4.10	Steel teeth connector and reinforcement of specimen (S4)	97
4.11	Steel teeth connector and reinforcement of specimen (S5)	98
4.12	Test specimen after painting	99
4.13	Electrical strain gauges (SGs) indicator with 5 channels	104
5.1	Failure mode of Specimen (S1)	114
5.2	Failure mode of Specimen (S2)	115
5.3	Failure mode of Specimen (S3)	116
5.4	Failure mode of Specimen (S4)	117
5.5	Failure mode of Specimen (S5)	118
5.6	Position of the points of displacement measuring.	120
5.7	Bottom view of specimen (S1)	128

List of Photos

LIST OF PHOTOS

Photo		Page
5.8	Bottom view of specimen (S2)	129
5.9	Bottom view of specimen (S3)	129
5.10	Bottom view of specimen (S4)	130
5.11	Bottom view of specimen (S5)	130
5.12	Steel strain locations in horizontal and vertical teeth Specimens	131

List of Figures

LIST OF FIGURES

Figure	e	Page
2.1	Strain, bending and shear stresses for no connection and full connection	15
2.2	Connector loads for rigid and flexible connectors	17
2.3	the deformation of flexible connectors	20
2.4	Rigid shear connectors (with hoops)	21
2.5	Functional dependency between strength and displacement	22
2.6	The shearing forces distribution mechanism at stud shear connectors in a composite beam	23
2.7	Failure model at headed stud	26
2.8	B- & D-Regions for cable stayed bridge	28
2.9	Case Study - Elevation of Taney Bridge	32
2.10	Case Study - Strut-and-tie Model at Pylon Head	33
3.1	a) Anchorage of a steel cable at the edge of a thin concrete slabb) Anchorage of a steel girder within a thin concrete slab	36
3.2	Arrangement of saw-tooth connections and corresponding strut and tie models for a saw-tooth connection	37
3.3	View and plan of the bridge	39
3.4	Anchorage of the main cables at deck with saw-tooth connections and vertical tie on either side of the deck slab	40
3.5	Step-by-step design of the horizontal cable forces' transfer into the concrete shell	41
3.6	the early teeth connector from Figure (3.4) for $\theta = 70^{\circ}$ and 20°	44
3.7	An open teeth connector, welded from steel plates, which satisfies $20^{\circ} < \theta < 70^{\circ}$	45
3.8	Movable and fixed anchorages of a self-anchored suspension bridge at Pforzheim	47
3.9	Cable anchorages at pylon heads	49
3.10	Cable anchorages along the 45 cm deck slab (right) and of back-stays (left)	49

List of Figures

LIST OF FIGURES

Figure)	Page
3.11	The cable-supported highway bridge at Ingolstadt, 1998 Overall view with the location of the cable anchorage discussed here	51
3.12	Teeth-shaped anchorage of 4 locked coil ropes Ø118 mm at an abutment	51
3.13	Saw-tooth connections for concentrated load transfer	52
3.14	a) best teeth geometryb) all possible inclinations of the compression stress field (see also Figure 3.7)	53
3.15	The Bridge over Nesenbachtal, Stuttgart, 1999	54
3.16	Teeth-connectors with eccentricities e_A (above) and e_A - e_L (below)	57
3.17	Strut and tie model for the anchorage of a tangential force at the edge of a slab	60
3.18	Interdependence of shear force v_f , concrete compression stress σ_{cw} and angle θ	61
3.19	Distribution of the shear forces $v_{f(x)}$ along connections of different length	62
3.20	Development of cracks during the loading process of a saw- tooth connection of 15m in length	64
3.21	Change of shear forces per meter $v_{f(x)}$ as loading F_{Lk} [MN] increases	64
3.22	Development of cracks during the loading process of a saw- tooth connection of 15 m in length with post-tensioned tendons	65
3.23	Change of shear forces per meter $v_{f(x)}$ as loading F_{Lk} [MN] increases	65
3.24	Development of cracks during the loading process of a saw- tooth connection of 15 m in length with curved post- tensioned tendons	66
3.25	Fan shaped compression field propped by teeth which provide a front perpendicular to the struts	67
3.26	Optimized geometry of the teeth made from casted steel	67
3.27	Compression fields with different angles θ and forces n_{cw} [MN/m] in front of the teeth	68

List of Figures

LIST OF FIGURES

Figur	e	Page
3.28	Single tooth and compressive strut inclined with $\theta = 30^{\circ}$: Areas with concrete failure and cracks	69
3.29	Group of teeth and compression field inclined with $\theta = 45^{\circ}$: Areas with concrete failure and cracks	69
3.30	Specimens concrete dimensions	71
3.31	Teeth geometry of specimen (S1)	72
3.32	Teeth geometry of specimen (S2)	72
3.33	Teeth geometry of specimen (S3)	73
3.34	Teeth geometry of specimen (S4)	73
3.35	Teeth geometry of specimen (S5)	74
4.1	Geometry of tested specimens	78
4.2	Reinforcement of tested specimens	79
4.3	Steel teeth connector of specimen (S1)	80
4.4	Steel teeth connector of specimen (S2)	81
4.5	Steel teeth connector of specimen (S3)	81
4.6	Steel teeth connector of specimen (S4)	82
4.7	Steel teeth connector of specimen (S5)	82
4.8	Concrete dimensions, reinforcement details and the details of teeth of the tested slab of tested Specimen (S1), Group (G1)	83
4.9	Concrete dimensions, reinforcement details and the details of teeth of the tested slab of tested Specimen (S2), Group (G1)	84
4.10	Concrete dimensions, reinforcement details and the details of teeth of the tested slab of tested Specimen (S3), Group (G1)	85
4.11	Concrete dimensions, reinforcement details and the details of teeth of the tested slab of tested Specimen (S4), Group (G2)	86