EFFECT OF SOME NATURAL ANTIOXIDANTS SUPPLEMENTATION ON PRODUCTIVE PERFORMANCE OF RABBITS UNDER HEAT STRESS CONDITIONS

By

OSAMA MOHAMED MOHAMED ABO EL-AZAB

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2002 M.Sc. Agric. Sc. (Poultry Physiology), Ain Shams University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF SOME NATURAL ANTIOXIDANTS SUPPLEMENTATION ON PRODUCTIVE PERFORMANCE OF RABBITS UNDER HEAT STRESS CONDITIONS

By

OSAMA MOHAMED MOHAMED ABO EL-AZAB

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2002 M.Sc. Agric. Sc. (Poultry Physiology), Ain Shams University, 2010

This thesis for Ph.D. degree has been approved by:

Dr.	Ahmed Mohamed El-Kaiaty
Dr.	Yousry Mohamed El-Hommosany
	Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams University
Dr.	Nematallah Gamal El-Dien Mohamed Ali
	Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams University
Dr.	Ibrahim El-Wardany El-Sayed
	Prof. Emeritus of Poultry Physiology, Faculty of Agriculture, Ain Shams University

Date of Examination: 5 / 10 / 2015

EFFECT OF SOME NATURAL ANTIOXIDANTS SUPPLEMENTATION ON PRODUCTIVE PERFORMANCE OF RABBITS UNDER HEAT STRESS CONDITIONS

By

OSAMA MOHAMED MOHAMED ABO EL-AZAB

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 2002 M.Sc. Agric. Sc. (Poultry Physiology), Ain Shams University, 2010

Under the supervision of:

Dr. Ibrahim El-Wardany El-Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Nematallah Gamal El-Dien Mohamed Ali

Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Alaa El-Din Yehia El-Badawi

Research Prof. of Animal Nutrition, Department of Animal Production, National Research Center

ABSTRACT

OSAMA MOHAMED MOHAMED ABOELAZAB: Effect of Some Natural Antioxidants Supplementation on Productive Performance of Rabbits Under Heat Stress Conditions. Unpublished Ph.D. Dissertation, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2015.

The present study was conducted to evaluate the effects of some natural antioxidants supplements (moringa dry leaves and rosemary dry leaves) to rabbit diets either singularly or in combinations on alleviating the negative impact of heat stress on productive performance. Sixty three male growing New Zealand White rabbits (NZW) aged six weeks old with an average body weight of 750.0±5.8g were distributed by weight in seven equal groups. The first group (R1) was fed on a basal diet. Moringa dry leaves powder was added with other feed ingredients at 0.5% and 1.0% (R2 and R3 groups), and also rosemary dry leaves powder at 0.5% and 1.0% (R4 and R5 groups), both moringa and rosemary at levels of 0.25% (R6) and 0.5% (R7) groups, respectively.

Results showed that live body weight, body weight gain and feed consumption were not affected among experimental groups. Feed conversion was numerically improved in high level combination group (R7) and moringa fed groups (R2; R3). Plasma T3, total protein, albumin and globulin were not significantly influenced by different treatments. Plasma total lipids, tri-glycerides, cholesterols and low density lipoproteins (LDL) levels were significantly decreased in experimental groups compared to control group. Plasma corticosterone level was significantly decreased in moringa fed groups (R2; R3) and low level combination group (R6). Hemolysatic malondialdehyde was significantly decreased, while total antioxidant capacity, catalase, glutathione peroxidase and superoxide dismutase activities were significantly increased in all experimental groups. Intestinal total plate count, *Salmonella*, *E. coli*, *Staphylococcus*

aureus and total mold count were decreased significantly in all experimental groups compared with control group.

It is concluded that, dietary supplementation with moringa dry leaves at 0.5% or a high mixture of moringa and rosemary dry leaves (0.5%+0.5%) may be used for enhancing productive performance and preventing pathogenic bacterial infections of growing rabbits reared under heat stress conditions.

Key words:

Natural Antioxidants, Heat Stress, Rabbits, Moringa, Rosemary, performance, Antimicrobial Effect

ACKNOWLEDGMENTS

First of all, all praise and limitless thanks to **My God** who gives me the capability to complete this study.

I would like to express my deep personal gratitude and sincere appreciation to **Prof. Dr. Ibrahim El-Wardany El-Sayed**, Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for suggesting the problem, his supervision, valuable advices and help during the whole period and in revising the manuscript to be in its final form.

My deep gratitude is extended to **Prof. Dr. Alaa El-Din Yehia El-Badawi**, Professor of Animal Nutrition, Department of Animal Production, National Research Centre, for his sincere supervision, valuable advice, continuous help, co-operation, providing the facilities, revising the manuscript and moral support during this work.

I wish to express my deepest thanks to **Prof. Dr. Nematallah Gamal El-Dien Mohamed Ali,** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for her valuable advices, co-operation, encouragement and constant interest throughout this work.

I wish to express my deepest thanks to Co-supervisor **Prof. Dr. Farouk Imam Saad Helal,** Professor of Animal Nutrition, Department of Animal Production, National Research Center, for his valuable advices, co-operation, encouragement and constant interest throughout this work.

I wish to express my deepest thanks to **Prof. Dr. Sherein Ismail Abd El-Moez,** Professor of Microbiology and Immunology, National Research Center, for her great efforts in exploring the microbiological examinations of this study.

I would like to express my deep thanks to all the staff members of the Department of Poultry Production, Faculty of Agriculture, Ain Shams University and the Department of Animal Production, National Research Center, for their support and kind help. Finally, I wish to express my deepest appreciation to my mother, wife and all members of my family for continuous support, help and credible encouragement.

CONTENTS

	Page
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	IX
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Heat Stress	5
2. Oxidative Stress	7
3. Natural Antioxidants	8
4. Moringa	16
4.1. Effects of moringa on feed intake and water consumption	19
4.2. Effects of moringa on feed utilization efficiency	20
4.3. Effects of moringa on growth performance	20
4.4. Effects of moringa on blood constituents	22
4.5. Effects of moringa on antioxidants status	23
4.6. Effects of moringa on intestinal pathogenic microbial load	25
4.7. Effects of moringa on histopathological changes	25
5. Rosemary	25
5.1. Effects of rosemary on feed intake and water consumption	27
5.2. Effects of rosemary on feed utilization efficiency	28
5.3. Effects of rosemary on growth performance	28
5.4. Effects of rosemary on blood constituents	30
5.5. Effects of rosemary on antioxidants status	31
5.6. Effects of rosemary on intestinal pathogenic microbial load	31
5.7. Effects of rosemary on histopathological changes	32
MATERIALS AND METHODS	35
1. Experimental procedures	35
1.1. Housing procedures	35
1.2. Animals and Management	36

	Page
1.3. Preparation of experimental feed additives	36
1.4. Feeding treatments	36
1.5. Total antioxidants determination	39
1.6. Digestibility trials	39
1.7. Slaughter procedures	40
2. Measurements	40
2.1. Growth performance parameters	40
2.2. Rectal temperature	41
2.3. Carcass characteristics	41
2.4. Physiological and biochemical parameters	42
2.4.1. Plasma glucose	42
2.4.2. Plasma total proteins	42
2.4.3. Plasma albumin, globulin and albumin to globulin ratio	
(A/G ratio)	42
2.4.4. Plasma total lipids, cholesterols and triglycerides	42
2.4.5. Plasma thyroxine and triiodothyronine	43
2.4.6. Plasma corticosterone	43
2.4.7. Plasma transaminases and creatinine	43
2.4.8. Blood antioxidant enzymes	43
3. Histological examination	44
4. Chemical analysis	44
5. Bacterial isolation, identification and enumeration	44
6. Statistical analysis	46
RESULTS AND DISCUSSION	47
1. Temperature-humidity index	47
2. Productive performance of rabbits	48
2.1. Live body weight (LBW) and body weight gain	48
2.2. Feed consumption and feed conversion ratio	52
2.3. Water consumption	55
3. Carcass characteristics	57
4. Chemical composition of carcass	60

	Page
5. Nutrients digestibility and nutritive value of experimental	
rations	60
6. Dietary nitrogen utilization	63
7. Hematological profile and N/L ratio	66
8. Blood biochemical analysis	69
8.1. Plasma glucose, total proteins, albumin and globulin levels	69
8.2. Plasma ALT, AST and creatinine	71
8.3. Plasma total lipids, cholesterols and tri-glycerides	74
9. Corticosterone and thyroid hormones	77
10. Rectal temperature	80
11. Antioxidants status	82
12. Intestinal and cecal microbial potentiality	85
13. Histological observations	89
13.1. Small intestine histology	89
13.2. Cecum histology	92
13.3. Liver histology	92
SUMMARY AND CONCLUSION	99
REFERENCES	103
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Composition of the basal diet	37
2	Chemical composition of basal diet, moringa dry leaves and rosemary dry leaves	38
3	Total antioxidant capacity of basal diet, moringa dry leaves and rosemary dry leaves	39
4	Average of temperature (°C), relative humidity (%) and temperature-humidity index (THI) through experimental period	47
5	Live body weight (g) and body weight gain (g/animal/day) of growing NZW rabbits in experimental groups	49
6	Feed intake (g. dry matter/animal/day) and feed conversion ratio (g. dry matter intake/ g. weight gain) of growing NZW rabbits in experimental groups	53
7	Calculated daily intake of experimental feed additives	54
8	Water consumption (ml /animal/day) of growing NZW rabbits in experimental groups	56
9	Carcass characteristics and dressing percentage of growing NZW rabbits in experimental groups	58
10	Non-edible offals and trimmings of growing NZW rabbits in experimental groups	59
11	Chemical composition of slaughtered NZW rabbits in experimental groups	61
12	Digestion coefficients and nutritive values of the experimental rations	62
13	Dietary nitrogen utilization (g) of rabbits fed experimental rations	64

Table		Page
14	Blood hematology and N/L ratio of growing NZW rabbits in experimental groups	67
15	Plasma glucose, total proteins, albumins, globulins and A/G ratio of NZW rabbits in experimental groups	70
16	Plasma creatinine, ALT and AST of NZW rabbits in experimental groups	72
17	Plasma total lipids, tri-glycerides, cholesterols, LDL and HDL of NZW rabbits in experimental groups	75
18	Plasma thyroid hormones, T_3/T_4 ratio and corticosterone levels of NZW rabbits in experimental groups	78
19	Rectal temperatures (°C) of NZW rabbits in experimental groups	81
20	Hemolysate malondialdehyde (MDA), total antioxidant capacity (TAC), catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) of NZW rabbits in experimental groups	83
21	Bacterial enumeration of intestinal contents of NZW rabbits in experimental groups	86
22	Bacterial enumeration of cecal contents of NZW rabbits in experimental groups	87

VII

LIST OF FIGURES

Figure		Page
1	Thermo-neutral zone	6
2	Major levels of antioxidants defense in the cell	9
3	Antioxidative phenolic diterpenes (carnosol, carnosic acid, rosmanol, and rosmarinic acid) found in plants	15
4	Flavonoid structure and flavonoids found in plant extracts	16
5	Moringa oleifera leaves	17
6	Rosmarinus officinalis leaves	26
7	Weekly calculated THI during experimental period	48
8	Body weight development of rabbits fed experimental rations	50
9	T.S. in the intestine of rabbits from R1 group (H&E x 40)	90
10	T.S. in the intestine of rabbits from R2 group (H&E x 40)	90
11	T.S. in the intestine of rabbits from R3 group (H&E x 40)	90
12	T.S. in the intestine of rabbits from R4 group (H&E x 40)	90
13	T.S. in the intestine of rabbits from R5 group (H&E x 40)	91
14	T.S. in the intestine of rabbits from R6 group (H&E x 40)	91
15	T.S. in the intestine of rabbits from R7 group (H&E x 40)	91

VIII

Figure		Page
16	T.S. in the cecum of rabbits from R1 group (H&E x	93
17	40) T.S. in the cecum of rabbits from R2 group (H&E x	93
18	40) T.S. in the cecum of rabbits from R3 group (H&E x	93
19	40) T.S. in the cecum of rabbits from R4 group (H&E x	93
20	40) T.S. in the cecum of rabbits from R5 group (H&E x	94
21	40) T.S. in the cecum of rabbits from R6 group (H&E x	94
22	40) T.S. in the cecum of rabbits from R7 group (H&E x	94
23	40) T.S. in the liver of rabbits from R1 group (H&E x 40)	95
24	T.S. in the liver of rabbits from R2 group (H&E x 40)	95
25	T.S. in the liver of rabbits from R3 group (H&E x 40)	95
26	T.S. in the liver of rabbits from R4 group (H&E x 40)	95
27	T.S. in the liver of rabbits from R5 group (H&E x 40)	96
28	T.S. in the liver of rabbits from R6 group (H&E x 40)	96
29	T.S. in the liver of rabbits from R7 group (H&E x 40)	96