Extent of Resection and Survival in Glioblastoma Multiforme

Essay

Submitted for partial fulfillment of the master degree in Neurosurgery

By:

Ahmad Abdul-Rahman Abul-Khair *M. B., B.Ch*

Supervised by

Prof. Dr/Hussien Elsayed Moharam

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Ass. Prof. Dr/Ahmed Darwish Mahmoud

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Dr/Salah Mostafa Hamada

Lecturer of neurosurgery
Faculty of Medicine, Ain shams University

Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr./Hussien Elsayed Moharam**, Professor of Neurosurgery, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Ass. Prof. Dr./Ahmed Darwish Mahmoud,** Assistant Professor of Neurosurgery, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I am also grateful to **Dr/Salah Mostafa Hamada**, Lecturer of Neurosurgery, Faculty of Medicine Ain Shams University for his enthusiasm, keen supervision, and kind help. She kindly assisted me and offered me a lot of her precious time.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Ahmad Abdul-Rahman Abul-Khair

Contents

List of Abbreviations	i
List of Tables	iv
List of Figures	V
Introduction and Aim of the Work	1
Anatomy	5
Histology	11
Pathology	15
Glioblastoma	19
Clinical Manifestations of Glioblastoma	31
Investigations	32
Treatment	40
Surgery	44
Novel Tools Aid Surgical Resection of Glioblastoma	73
Radiation Therapy	76
Chemotherapy	78
Immunotherapy	80
Gene Therapy	81
Prognosis	83
Recurrent Glioblastoma	91
Summary	111
References	113
Arabic Summary	

List of Abbreviations

AA : Anaplastic astrocytoma ACA : Anterior cerebral artery

ADC : Apparent diffusion coefficient

AIDS : Acquired immunodeficiency syndrome

ALA-5 : 5-Aminolevulinic acid

AVM : Arteriovenous malformations

BBB : Blood brain barrier

BBTB : Blood brain tumor barrier BCNU : Bischloroethylnitrosourea

BIS : Bispectral index

BNCT : Boron neutron capture therapy BOLD : Blood oxygen level dependent

BTSC : Brain tumor stem cells

CC : Corpus callosum

CECT : Contrast enhanced computerized tomography

CNS : Central nervous system CSF : Cerebrospinal fluid

CTL : Cytotoxic T lymphocyte

DSA : Digital subtraction angiography

DTI : Diffusion tensor imagingDTI : Diffusion tensor imagingDWI : Diffusion-weighted imaging

EOR : Extent of resection

FasL : Fas ligand

FIGS : Fluorescence image guided surgical resection

fMRI : Functional magnetic resonance imaging

GBM : Glioblastoma multiform

GFAP : Glial Fibrillary Acidic Protein

GTR : Gross total resection HGGs : High grade gliomas

HLA : Human leukocyte antigenHPD : Haematoporphyrin derivative

List of Abbreviations (Cont.)

HSV-1 : Herpes simplex virus-1 ICP : Intracranial pressure

IDH1 : Isocitrate dehydrogenase 1

iMRI : Intraoperative MRI

IMRT : Intensity modulated radiation therapy

IORT : Intraoperative radiation

KPS : Karnofsky Performance Status Scale

MCA : Middle cerebral artery

MGMT : O6-methylguanine-DNA methyltransferase

MRS : Magnetic resonance spectroscopy

NAA : N-acetyl aspartate

NECT : Non enhanced computerized tomography

NF1 : Neurofibromatosistype 1 NF2 : Neurofibromatosis type 2

NSC : Neural stem cellsNTR : Near-total resectionPCA : Posterior cerebral artery

PDGFRA : Platelet-derived growth factor receptor

PDT : Photodynamic treatment

PET : Positron emission tomography
PNET : Primitive neuroectodermal tumor

PNS : Peripheral nervous system

PTEN : Phosphatase and tensinhomologue from

chromosome 10

rCBV : Relative cerebral blood volume

RT : Radiation therapy

SRS : Stereotactic radiosurgery

STR : Subtotal resection

TCGA : The Cancer Genome AtlasTGF-β2 : Transforming growth factor

TMZ : Temozolomide

List of Abbreviations (Cont.)

TP53

Tumor protein Vascular endothelial growth factor World Health Organization **VEGF**

WHO

List of tables

Table	Title	Page
1	Astrocytic tumors	18
2	Karnofsky Performance Score for Brain	85
	Tumor Patients	
3	Extent of Resection of glioblastoma in	88
	Selected Volumetric and Nonvolumetric	
	Studies in the Neurosurgical Literature	

List of Figures

Fig.	Title	Page
1	Cerebral hemispheres: dorsolateral view	7
2	Cerebral hemispheres: inferior view with brain stem	7
3	Cerebral hemispheres: MRI. Sagittal view	8
4	Spinal cord: longitudinal view	10
5	Nervous system: neurons and glial cells	11
6	Forms of astrocytes. A. Protoplasmic astrocytes. B. Fibrillary astrocytes C. Positive immunostaining for glial fibrillary acidic protein (GFAP)	14
7	Glioblastoma. a. A grayish, firm, relatively circumscribed tumorous infiltration obscures the temporalconvolutions. b. On transverse section, the tumor contains fresh hemorrhages and viable tumor in the cortex. d. A large glioblastoma is situated in the left posterior temporal lobe, extending into the right temporal lobe across the splenium in a butterfl y pattern. It consists of grayish viable tumor and extensive yellow necrotic areas intermixed with old and recent hemorrhages	22
8	Pathological Features of Glioblastoma. Panels A and B show the histologic appearance of a glioblastoma, characterized by nuclear pleomorphism, dense cellularity, and pseudopalisading necrosis (asterisk) as well as vascular endothelial proliferation (asterisk) and mitotic figures (arrows)	23

List of Figures (cont.)		
Fig.	Title	Page
9	Patterns of glioblastomas dissemination. (a) Axial post-contrast T1-weighted image shows extension of a glioblastoma through the splenium of the corpus callosum (butterfly glioma). (b) Axial T1-weighted images shows subependymal spread of aglioblastoma (arrow). (c) Right parasagittal postcontrast T1-weighted image shows a parietal lesion with strong enhancement and peripheral edema. In the right temporal lobe a second separate enhanced lesion is seen. Autopsy proved a multicentric glioblastoma. (d) Axial T1-weighted images show a glioblastoma with satellite-enhanced nodules. Note the spread across the ependyma. Biopsy proved a multifocal glioblastoma	30
10	(a) Unenhanced CT shows a low density, right temporoparietal mass with ill-defined borders. (b) Postenhanced CT shows an irregular ring-like enhancement of the mass with central necrosis	33

	List of Figures (Cont.)	
Fig.	Title	Page
11	Glioblastoma. Postcontrast T1WI shows	37
	a space-occupying and inhomogeneously	
	enhanced mass involving the corpus	
	callosum (a) with increased diffusion (b)	
	and low corresponding ADC (c). The	
	fractional anisotropy color coded map	
	(d) shows reduction of the FA values	
	(arrow), while the tractography (e)	
	demonstrates displacement and	
	destruction of the white matter tracts.	
	Perfusion color coded map (f)	
	demonstrates increased rCBV	
12	Glioblastoma multiforme. (a,b) Cho:Cr	38
	and Cho: NAA maps demonstrate	
	significantly elevated ratios (Cho:Cr	
	8:06 and Cho:NAA 15:3)	
13	Neoplasms and tumor like lesion	39
14	Bifrontal approach	54
15	Middle frontal approach	54
16	Frontotemporal (pterional) approach	55
17	Frontotemporal (extended temporal)	56
	approach	
18	Temporal approach	57
19	Posterior frontal-parietal (vertex)	58
	approach	
20	Occipital approach	59
21	Temporal suboccipital approach	60
22	Suboccipital (lateral) approach	61
23	Suboccipital (far lateral) approach	61

	List of Figures (Cont.)	
Fig.	Title	Page
24	The tumor zone model. a Conceptual	71
	framework depicting the heterogeneity	
	of malignant gliomas is encapsulated in	
	a model classifying gliomas into three	
	distinct tumor zones (TZs). TZ I consists	
	of the main tumor bulk. TZ II represents	
	tumor microenvironment or zone of	
	perifocal oedema. TZ III represents	
	macroscopically healthy brain	
	parenchyma. Microglial cells accumulate	
	most frequently in TZ II, although they	
	can also be identified in TZs I and III. b	
	TZs in the context of an actual tumor.	
	Imaging using white-light microscopy	
	(left panel) does not enable	
	differentiation of the individual zones.	
	Imaging of vascularization by use of	
	indocyanine green fluorescence (right	
	panel) enables visualization of areas of	
	hypervascularization (representing TZ	
	II) that border TZ I and III. c Model of	
	the relationship between tumor cell mass	
	and survival time. Tumor growth	
	kinetics during the undetected preclinical	
	phase and following neuro-oncological	
	therapy. A tumor load of 1010 cells	
	leads to clinical symptoms, even if the	
	tumor is located in a functionally silent	
	area of the brain. An increase in tumor	
	load to >1011 cells is incompatible with	
	life. Abbreviations: CT, chemotherapy;	
	OP, operation; RT, radiotherapy	

List of Figures (Cont.)		
Fig.	Title	Page
25	Assessment of multimodality treatment on survival of patients with glioblastoma at The Johns Hopkins Hospital, all of whom underwent surgical resection. The mean survival of patients treated with just radiation therapy after tumor resection was 9 months ($n = 147$ patients). Combination treatment with radiation therapy and intraoperative Gliadel placement increased mean patient survival to 13 months after surgical resection ($n = 45$). Treatment of patients with the radiation therapy and temozolomide9 further increased mean survival to 15 months ($n = 52$). Finally, multimodality treatment involving radiation therapy, temozolomide, and intraoperative placement of Gliadel resulted in the longest mean survival time of 20 months ($n = 32$)	90
26	Recurrent glioma. Decisions in the management of a recurrent tumor should consider grade, resectability, and prior therapy. CTx, chemotherapy; focal rad/boost, stereotactic radiosurgery, brachytherapy, or radiotherapy; N, neurologic; reg rad, regional fractionated radiation therapy; small focal, less than 10cm^3 , radiographically demarcated	100

Introduction

Glioblastoma is a cancerous brain tumor thought to be developed from astrocytes. It is both the most common and the most aggressive malignant primary central nervous system (CNS) tumor in adult. (1)

The aetiology of glioblastoma is still not well understood. Most glioblastoma tumors appear to be sporadic, without any genetic predisposition. Glioblastomas can be subdivided into primary and secondary glioblastomas. Primary glioblastomas occur de-novo without preceding lower grade astrocytomas. They tend to occur in older individuals. Secondary glioblastomas arise as malignant degeneration of lower grade tumors. They occur in younger individuals.

Histopathologically, glioblastomas are diffuse intraaxial brain tumors largely made up of neoplastic cells resembling primitive astrocytes. According to WHO classification; glioblastomas are grade IV.

The symptomatic presentation of glioblastoma can be divided into two coexistent categories:

- 1. Non-specific symptoms of elevated intracranial pressure (ICP) which include headache, drowsiness, visual obscurations, nausea, vomiting, nuchal rigidity, papilledema, and occasionally 6th nerve palsy.
- ^{2.} Site-specific symptoms vary by tumor location and include motor, sensory, visual, language, and speech disturbances, seizures. Hearing and gait abnormalities may also been seen. ⁽²⁾

Definitive diagnosis of a suspected glioblastomas on CT or MRI requires a stereotactic biopsy or a craniotomy with tumor resection and pathologic confirmation. Treatment

Introduction and Aim of The Work

requires effective teamwork from neurosurgeons, neurooncologists, radiation oncologists, physician assistants, social workers, psychologists, and nurses. A supportive family environment is also helpful. The key reason for the lack of successful therapy is the infiltration of single tumor cells into the surrounding brain parenchyma cells, preventing complete glioblastoma resection.

The treatment of glioblastoma can be subdivided into:

(1) Symptomatic therapy:

- Corticosteroids: usually dexamethasone can reduce peritumoral edema, diminishing mass effect and lowering intracranial pressure, with a decrease in headache or drowsiness.
- Antiepileptic drugs: historically, around 90% with glioblastoma patients underwent although anticonvulsant treatment, it has estimated that only approximately 40% of patients required this treatment. (3)

(2) Palliative therapy:

Palliative treatment usually is conducted to improve quality of life and to achieve a longer survival time. It includes surgery, radiation therapy, chemotherapy and other novel therapies. Gross total resection of tumor is associated with a better prognosis. (4)

Surgery

Surgery is the first stage of treatment of glioblastoma. The greater the extent of tumor removal, the better. Removal of 98% or more of the tumor has been associated with a significantly longer healthier time than if less than 98% of the tumor is removed. (5)